tensorflow泰坦尼克号沉船数据预测模型

2024-06-14 08:38

本文主要是介绍tensorflow泰坦尼克号沉船数据预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先下载数据
https://www.kaggle.com/c/titanic/data
kaggle上面的数据

import pandas as pd
import numpy as np
import os,sys
os.getcwd()
data = pd.read_csv(’./tt/train.csv’)
data.columns
data = data[[‘Survived’, ‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’,
‘Parch’, ‘Fare’, ‘Cabin’, ‘Embarked’]]
data[‘Age’] = data[‘Age’].fillna(data[‘Age’].mean())
data[‘Cabin’] = pd.factorize(data.Cabin)[0]
data.fillna(0,inplace = True)
data[‘p1’] = np.array(data[‘Pclass’] == 1).astype(np.int32)

data[‘p2’] = np.array(data[‘Pclass’] == 2).astype(np.int32)

data[‘p3’] = np.array(data[‘Pclass’] == 3).astype(np.int32)
del data[‘Pclass’]
data.Embarked.unique()

data[‘e1’] = np.array(data[‘Embarked’] == ‘S’).astype(np.int32)

data[‘e2’] = np.array(data[‘Embarked’] == ‘C’).astype(np.int32)

data[‘e3’] = np.array(data[‘Embarked’] == ‘Q’).astype(np.int32)

del data[‘Embarked’]

data[‘Sex’] = [1 if x == ‘male’ else 0 for x in data.Sex]

data.values.dtype
data_train = data[[ ‘Sex’, ‘Age’, ‘SibSp’,
‘Parch’, ‘Fare’, ‘Cabin’, ‘p1’,‘p2’,‘p3’,‘e1’,‘e2’,‘e3’]]
data_target = data[‘Survived’].values.reshape(len(data),1)

np.shape(data_train),np.shape(data_target)

import tensorflow as tf

x = tf.placeholder(“float”,shape=[None,12])
y = tf.placeholder(“float”,shape=[None,1])

weight = tf.Variable(tf.random_normal([12,1]))
bias = tf.Variable(tf.random_normal([1]))
output = tf.matmul(x,weight) + bias
pred = tf.cast(tf.sigmoid(output)>0.5,tf.float32)

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = output))

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = output))

train_step = tf.train.GradientDescentOptimizer(0.0003).minimize(loss)

accuracy = tf.reduce_mean(tf.cast(tf.equal(pred,y),tf.float32))

data_test = pd.read_csv(’./tt/test.csv’)

data_test.column

data_test.columns

In[42]:

date_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]].copy()

In[43]:

data_test

In[44]:

data_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]]

In[51]:

data_test

In[46]:

data_test[‘Age’] = data_test[‘Age’].fillna(data[‘Age’].mean())

In[47]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[48]:

data_test

In[49]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[50]:

data_test[‘Cabin’] = pd.factorize(data_test.Cabin)[0]

In[52]:

data_test = data_test[[‘Pclass’, ‘Sex’, ‘Age’, ‘SibSp’, ‘Parch’,
‘Fare’, ‘Cabin’, ‘Embarked’]].copy()
data_test[‘Cabin’] = pd.factorize(data_test.Cabin)[0]

In[53]:

data_test[‘Age’] = data_test[‘Age’].fillna(data_test[‘Age’].mean())

In[54]:

data_test.fillna(0,inplace = True)

In[55]:

data_test[‘Sex’] = [1 if x == ‘male’ else 0 for x in data_test.Sex]

In[56]:

data_test[‘p1’] = np.array(data_test[‘Pclass’] == 1).astype(np.int32)
data_test[‘p2’] = np.array(data_test[‘Pclass’] == 2).astype(np.int32)
data_test[‘p3’] = np.array(data_test[‘Pclass’] == 3).astype(np.int32)
data_test[‘e1’] = np.array(data_test[‘Embarked’] == ‘S’).astype(np.int32)
data_test[‘e2’] = np.array(data_test[‘Embarked’] == ‘C’).astype(np.int32)
data_test[‘e3’] = np.array(data_test[‘Embarked’] == ‘Q’).astype(np.int32)
del data_test[‘Pclass’]
del data_test[‘Embarked’]

In[57]:

test_lable = pd.read_csv(’./tt/gender.csv’)
test_lable = np.reshape(test_lable.Survived.values.astype(np.float32),(418,1))

In[58]:

test_lable = pd.read_csv(’./tt/gender.csv’)
test_lable = np.reshape(test_lable.Survived.values.astype(np.float32),(418,1))

In[59]:

sess = tf.Session()
sess.run(tf.global_variables_initializer())
loss_train = []
train_acc = []
test_acc = []

In[61]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i % 1000==0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[62]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[64]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[65]:

for i in range(25000):
index = np.random.permutation(len(data_target))
data_train = data_train[index]
data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[66]:

for i in range(25000):
#index = np.random.permutation(len(data_target))
#data_train = data_train[index]
#data_target = data_target[index]
for n in range(len(data_target)//100 + 1):
batch_xs = data_train[n100:n100 + 100]
batch_ys = data_target[n100:n100 + 100]
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
if i%1000 == 0:
loss_temp = sess.run(loss,feed_dict={x: batch_xs,y: batch_ys})
loss_train.append(loss_temp)
train_acc_temp = sess.run(accuracy,feed_dict={x: batch_xs,y: batch_ys})
train_acc.append(train_acc_temp)
print(loss_temp,train_acc_temp)

In[67]:

import matplotlib.pyplot as plt

In[68]:

plt.plot(loss_train,‘k-’)
plt.title(‘train loss’)
plt.show()

In[69]:

plt.plot(train_acc,‘b–’,label = ‘train_acc’)
plt.plot(test_acc,‘r–’,label = ‘test_acc’)
plt.title(‘acc’)
plt.legend()
plt.show()

这篇关于tensorflow泰坦尼克号沉船数据预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059913

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密