DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

2024-06-14 06:04

本文主要是介绍DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

flyfish

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的更新

DeepSORT(目标跟踪算法)中卡尔曼增益的理解

DeepSORT(目标跟踪算法)中的卡尔曼滤波 - 看了就会的状态转移矩阵

DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的预测

DeepSORT(目标跟踪算法)中自由度决定卡方分布的形状

DeepSORT(目标跟踪算法)中的解三角方程计算标准化残差(解线性方程组)

DeepSORT(目标跟踪算法)中的计算观测值与状态估计的马氏距离

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细)

DeepSORT(目标跟踪算法)中 可以设置阈值进行异常检测或目标跟踪的原因

DeepSORT(目标跟踪算法)中的数值表格与调参的关系

卡尔曼滤波的完整流程

1. 初始化

在第一个时刻,需要初始化状态向量和误差协方差矩阵:

  • 状态向量(State Vector) x 0 \mathbf{x}_0 x0:对系统初始状态的估计。
  • 误差协方差矩阵(Error Covariance Matrix) P 0 \mathbf{P}_0 P0:初始状态估计的不确定性。

2. 预测步骤(Prediction Step)

预测系统在下一个时刻的状态和误差协方差矩阵。

  • 预测状态(Predicted State) x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1 x ^ k ∣ k − 1 = A k − 1 x ^ k − 1 ∣ k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1x^k1∣k1+Bk1uk1其中, A k − 1 \mathbf{A}_{k-1} Ak1 是状态转移矩阵, B k − 1 \mathbf{B}_{k-1} Bk1 是控制输入矩阵, u k − 1 \mathbf{u}_{k-1} uk1 是控制输入。
  • 预测误差协方差矩阵(Predicted Error Covariance Matrix) P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1 P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1其中, Q k − 1 \mathbf{Q}_{k-1} Qk1 是过程噪声协方差矩阵。

3. 更新步骤(Update Step)

利用新测量数据更新预测的状态和误差协方差矩阵。

  • 卡尔曼增益(Kalman Gain) K k \mathbf{K}_k Kk K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1其中, H k \mathbf{H}_k Hk 是观测矩阵, R k \mathbf{R}_k Rk 是观测噪声协方差矩阵。
  • 更新状态(Updated State) x ^ k ∣ k \hat{\mathbf{x}}_{k|k} x^kk x ^ k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) x^kk=x^kk1+Kk(zkHkx^kk1)其中, z k \mathbf{z}_k zk 是测量向量。
  • 更新误差协方差矩阵(Updated Error Covariance Matrix) P k ∣ k \mathbf{P}_{k|k} Pkk P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1其中, I \mathbf{I} I 是单位矩阵。

4. 循环迭代

重复步骤2和步骤3,处理每个新的测量数据。

各个字母的含义

1. 预测步骤(Prediction Step)

预测步骤包括状态预测和误差协方差预测。

状态预测(State Prediction)

x ^ k ∣ k − 1 = A k − 1 x k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1xk1+Bk1uk1

  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量(在时间 k k k 时的先验估计)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵,描述系统从时间 k − 1 k-1 k1 到时间 k k k 的动态。
  • x k − 1 \mathbf{x}_{k-1} xk1:在时间 k − 1 k-1 k1 时的状态向量(后验估计)。
  • B k − 1 \mathbf{B}_{k-1} Bk1:控制输入矩阵,描述控制输入对系统状态的影响。
  • u k − 1 \mathbf{u}_{k-1} uk1:在时间 k − 1 k-1 k1 时的控制输入向量。
误差协方差预测(Error Covariance Prediction)

P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1

  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵(在时间 k k k 时的先验估计的不确定性)。
  • P k − 1 ∣ k − 1 \mathbf{P}_{k-1|k-1} Pk1∣k1:在时间 k − 1 k-1 k1 时的误差协方差矩阵(后验估计的不确定性)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵。
  • Q k − 1 \mathbf{Q}_{k-1} Qk1:过程噪声协方差矩阵,描述系统过程噪声的不确定性。

2. 更新步骤(Update Step)

更新步骤包括计算卡尔曼增益、更新状态估计和更新误差协方差矩阵。

计算卡尔曼增益(Kalman Gain Calculation)

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1

  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵,描述测量值对状态估计的影响。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵,描述状态向量到测量向量的映射。
  • R k \mathbf{R}_k Rk:测量噪声协方差矩阵,描述测量噪声的不确定性。
更新状态估计(State Update)

x k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \mathbf{x}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) xkk=x^kk1+Kk(zkHkx^kk1)

  • x k ∣ k \mathbf{x}_{k|k} xkk:更新后的状态向量(在时间 k k k 时的后验估计)。
  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • z k \mathbf{z}_k zk:在时间 k k k 时的实际测量向量。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • H k x ^ k ∣ k − 1 \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1} Hkx^kk1:预测测量值。
更新误差协方差矩阵(Error Covariance Update)

P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1

  • P k ∣ k \mathbf{P}_{k|k} Pkk:更新后的误差协方差矩阵(在时间 k k k 时的后验估计的不确定性)。
  • I \mathbf{I} I:单位矩阵。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。

这篇关于DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059574

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

python之流程控制语句match-case详解

《python之流程控制语句match-case详解》:本文主要介绍python之流程控制语句match-case使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录match-case 语法详解与实战一、基础值匹配(类似 switch-case)二、数据结构解构匹

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

在VSCode中本地运行DeepSeek的流程步骤

《在VSCode中本地运行DeepSeek的流程步骤》本文详细介绍了如何在本地VSCode中安装和配置Ollama和CodeGPT,以使用DeepSeek进行AI编码辅助,无需依赖云服务,需要的朋友可... 目录步骤 1:在 VSCode 中安装 Ollama 和 CodeGPT安装Ollama下载Olla