DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

2024-06-14 06:04

本文主要是介绍DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

flyfish

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的更新

DeepSORT(目标跟踪算法)中卡尔曼增益的理解

DeepSORT(目标跟踪算法)中的卡尔曼滤波 - 看了就会的状态转移矩阵

DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的预测

DeepSORT(目标跟踪算法)中自由度决定卡方分布的形状

DeepSORT(目标跟踪算法)中的解三角方程计算标准化残差(解线性方程组)

DeepSORT(目标跟踪算法)中的计算观测值与状态估计的马氏距离

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细)

DeepSORT(目标跟踪算法)中 可以设置阈值进行异常检测或目标跟踪的原因

DeepSORT(目标跟踪算法)中的数值表格与调参的关系

卡尔曼滤波的完整流程

1. 初始化

在第一个时刻,需要初始化状态向量和误差协方差矩阵:

  • 状态向量(State Vector) x 0 \mathbf{x}_0 x0:对系统初始状态的估计。
  • 误差协方差矩阵(Error Covariance Matrix) P 0 \mathbf{P}_0 P0:初始状态估计的不确定性。

2. 预测步骤(Prediction Step)

预测系统在下一个时刻的状态和误差协方差矩阵。

  • 预测状态(Predicted State) x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1 x ^ k ∣ k − 1 = A k − 1 x ^ k − 1 ∣ k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1x^k1∣k1+Bk1uk1其中, A k − 1 \mathbf{A}_{k-1} Ak1 是状态转移矩阵, B k − 1 \mathbf{B}_{k-1} Bk1 是控制输入矩阵, u k − 1 \mathbf{u}_{k-1} uk1 是控制输入。
  • 预测误差协方差矩阵(Predicted Error Covariance Matrix) P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1 P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1其中, Q k − 1 \mathbf{Q}_{k-1} Qk1 是过程噪声协方差矩阵。

3. 更新步骤(Update Step)

利用新测量数据更新预测的状态和误差协方差矩阵。

  • 卡尔曼增益(Kalman Gain) K k \mathbf{K}_k Kk K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1其中, H k \mathbf{H}_k Hk 是观测矩阵, R k \mathbf{R}_k Rk 是观测噪声协方差矩阵。
  • 更新状态(Updated State) x ^ k ∣ k \hat{\mathbf{x}}_{k|k} x^kk x ^ k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) x^kk=x^kk1+Kk(zkHkx^kk1)其中, z k \mathbf{z}_k zk 是测量向量。
  • 更新误差协方差矩阵(Updated Error Covariance Matrix) P k ∣ k \mathbf{P}_{k|k} Pkk P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1其中, I \mathbf{I} I 是单位矩阵。

4. 循环迭代

重复步骤2和步骤3,处理每个新的测量数据。

各个字母的含义

1. 预测步骤(Prediction Step)

预测步骤包括状态预测和误差协方差预测。

状态预测(State Prediction)

x ^ k ∣ k − 1 = A k − 1 x k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1xk1+Bk1uk1

  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量(在时间 k k k 时的先验估计)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵,描述系统从时间 k − 1 k-1 k1 到时间 k k k 的动态。
  • x k − 1 \mathbf{x}_{k-1} xk1:在时间 k − 1 k-1 k1 时的状态向量(后验估计)。
  • B k − 1 \mathbf{B}_{k-1} Bk1:控制输入矩阵,描述控制输入对系统状态的影响。
  • u k − 1 \mathbf{u}_{k-1} uk1:在时间 k − 1 k-1 k1 时的控制输入向量。
误差协方差预测(Error Covariance Prediction)

P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1

  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵(在时间 k k k 时的先验估计的不确定性)。
  • P k − 1 ∣ k − 1 \mathbf{P}_{k-1|k-1} Pk1∣k1:在时间 k − 1 k-1 k1 时的误差协方差矩阵(后验估计的不确定性)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵。
  • Q k − 1 \mathbf{Q}_{k-1} Qk1:过程噪声协方差矩阵,描述系统过程噪声的不确定性。

2. 更新步骤(Update Step)

更新步骤包括计算卡尔曼增益、更新状态估计和更新误差协方差矩阵。

计算卡尔曼增益(Kalman Gain Calculation)

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1

  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵,描述测量值对状态估计的影响。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵,描述状态向量到测量向量的映射。
  • R k \mathbf{R}_k Rk:测量噪声协方差矩阵,描述测量噪声的不确定性。
更新状态估计(State Update)

x k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \mathbf{x}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) xkk=x^kk1+Kk(zkHkx^kk1)

  • x k ∣ k \mathbf{x}_{k|k} xkk:更新后的状态向量(在时间 k k k 时的后验估计)。
  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • z k \mathbf{z}_k zk:在时间 k k k 时的实际测量向量。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • H k x ^ k ∣ k − 1 \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1} Hkx^kk1:预测测量值。
更新误差协方差矩阵(Error Covariance Update)

P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1

  • P k ∣ k \mathbf{P}_{k|k} Pkk:更新后的误差协方差矩阵(在时间 k k k 时的后验估计的不确定性)。
  • I \mathbf{I} I:单位矩阵。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。

这篇关于DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059574

相关文章

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

springboot启动流程过程

《springboot启动流程过程》SpringBoot简化了Spring框架的使用,通过创建`SpringApplication`对象,判断应用类型并设置初始化器和监听器,在`run`方法中,读取配... 目录springboot启动流程springboot程序启动入口1.创建SpringApplicat

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

SQL Server数据库迁移到MySQL的完整指南

《SQLServer数据库迁移到MySQL的完整指南》在企业应用开发中,数据库迁移是一个常见的需求,随着业务的发展,企业可能会从SQLServer转向MySQL,原因可能是成本、性能、跨平台兼容性等... 目录一、迁移前的准备工作1.1 确定迁移范围1.2 评估兼容性1.3 备份数据二、迁移工具的选择2.1

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

MySQL的cpu使用率100%的问题排查流程

《MySQL的cpu使用率100%的问题排查流程》线上mysql服务器经常性出现cpu使用率100%的告警,因此本文整理一下排查该问题的常规流程,文中通过代码示例讲解的非常详细,对大家的学习或工作有一... 目录1. 确认CPU占用来源2. 实时分析mysql活动3. 分析慢查询与执行计划4. 检查索引与表

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

C#从XmlDocument提取完整字符串的方法

《C#从XmlDocument提取完整字符串的方法》文章介绍了两种生成格式化XML字符串的方法,方法一使用`XmlDocument`的`OuterXml`属性,但输出的XML字符串不带格式,可读性差,... 方法1:通过XMLDocument的OuterXml属性,见XmlDocument类该方法获得的xm