DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

2024-06-14 06:04

本文主要是介绍DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

flyfish

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的更新

DeepSORT(目标跟踪算法)中卡尔曼增益的理解

DeepSORT(目标跟踪算法)中的卡尔曼滤波 - 看了就会的状态转移矩阵

DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的预测

DeepSORT(目标跟踪算法)中自由度决定卡方分布的形状

DeepSORT(目标跟踪算法)中的解三角方程计算标准化残差(解线性方程组)

DeepSORT(目标跟踪算法)中的计算观测值与状态估计的马氏距离

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细)

DeepSORT(目标跟踪算法)中 可以设置阈值进行异常检测或目标跟踪的原因

DeepSORT(目标跟踪算法)中的数值表格与调参的关系

卡尔曼滤波的完整流程

1. 初始化

在第一个时刻,需要初始化状态向量和误差协方差矩阵:

  • 状态向量(State Vector) x 0 \mathbf{x}_0 x0:对系统初始状态的估计。
  • 误差协方差矩阵(Error Covariance Matrix) P 0 \mathbf{P}_0 P0:初始状态估计的不确定性。

2. 预测步骤(Prediction Step)

预测系统在下一个时刻的状态和误差协方差矩阵。

  • 预测状态(Predicted State) x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1 x ^ k ∣ k − 1 = A k − 1 x ^ k − 1 ∣ k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1x^k1∣k1+Bk1uk1其中, A k − 1 \mathbf{A}_{k-1} Ak1 是状态转移矩阵, B k − 1 \mathbf{B}_{k-1} Bk1 是控制输入矩阵, u k − 1 \mathbf{u}_{k-1} uk1 是控制输入。
  • 预测误差协方差矩阵(Predicted Error Covariance Matrix) P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1 P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1其中, Q k − 1 \mathbf{Q}_{k-1} Qk1 是过程噪声协方差矩阵。

3. 更新步骤(Update Step)

利用新测量数据更新预测的状态和误差协方差矩阵。

  • 卡尔曼增益(Kalman Gain) K k \mathbf{K}_k Kk K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1其中, H k \mathbf{H}_k Hk 是观测矩阵, R k \mathbf{R}_k Rk 是观测噪声协方差矩阵。
  • 更新状态(Updated State) x ^ k ∣ k \hat{\mathbf{x}}_{k|k} x^kk x ^ k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) x^kk=x^kk1+Kk(zkHkx^kk1)其中, z k \mathbf{z}_k zk 是测量向量。
  • 更新误差协方差矩阵(Updated Error Covariance Matrix) P k ∣ k \mathbf{P}_{k|k} Pkk P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1其中, I \mathbf{I} I 是单位矩阵。

4. 循环迭代

重复步骤2和步骤3,处理每个新的测量数据。

各个字母的含义

1. 预测步骤(Prediction Step)

预测步骤包括状态预测和误差协方差预测。

状态预测(State Prediction)

x ^ k ∣ k − 1 = A k − 1 x k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1xk1+Bk1uk1

  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量(在时间 k k k 时的先验估计)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵,描述系统从时间 k − 1 k-1 k1 到时间 k k k 的动态。
  • x k − 1 \mathbf{x}_{k-1} xk1:在时间 k − 1 k-1 k1 时的状态向量(后验估计)。
  • B k − 1 \mathbf{B}_{k-1} Bk1:控制输入矩阵,描述控制输入对系统状态的影响。
  • u k − 1 \mathbf{u}_{k-1} uk1:在时间 k − 1 k-1 k1 时的控制输入向量。
误差协方差预测(Error Covariance Prediction)

P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1

  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵(在时间 k k k 时的先验估计的不确定性)。
  • P k − 1 ∣ k − 1 \mathbf{P}_{k-1|k-1} Pk1∣k1:在时间 k − 1 k-1 k1 时的误差协方差矩阵(后验估计的不确定性)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵。
  • Q k − 1 \mathbf{Q}_{k-1} Qk1:过程噪声协方差矩阵,描述系统过程噪声的不确定性。

2. 更新步骤(Update Step)

更新步骤包括计算卡尔曼增益、更新状态估计和更新误差协方差矩阵。

计算卡尔曼增益(Kalman Gain Calculation)

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1

  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵,描述测量值对状态估计的影响。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵,描述状态向量到测量向量的映射。
  • R k \mathbf{R}_k Rk:测量噪声协方差矩阵,描述测量噪声的不确定性。
更新状态估计(State Update)

x k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \mathbf{x}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) xkk=x^kk1+Kk(zkHkx^kk1)

  • x k ∣ k \mathbf{x}_{k|k} xkk:更新后的状态向量(在时间 k k k 时的后验估计)。
  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • z k \mathbf{z}_k zk:在时间 k k k 时的实际测量向量。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • H k x ^ k ∣ k − 1 \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1} Hkx^kk1:预测测量值。
更新误差协方差矩阵(Error Covariance Update)

P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1

  • P k ∣ k \mathbf{P}_{k|k} Pkk:更新后的误差协方差矩阵(在时间 k k k 时的后验估计的不确定性)。
  • I \mathbf{I} I:单位矩阵。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。

这篇关于DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059574

相关文章

Security OAuth2 单点登录流程

单点登录(英语:Single sign-on,缩写为 SSO),又译为单一签入,一种对于许多相互关连,但是又是各自独立的软件系统,提供访问控制的属性。当拥有这项属性时,当用户登录时,就可以获取所有系统的访问权限,不用对每个单一系统都逐一登录。这项功能通常是以轻型目录访问协议(LDAP)来实现,在服务器上会将用户信息存储到LDAP数据库中。相同的,单一注销(single sign-off)就是指

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X