DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

2024-06-14 04:52

本文主要是介绍DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

flyfish

状态转移矩阵(State Transition Matrix)F的构造

这篇是一定要看的,拖到文章的最后部分,需要理解状态转移矩阵怎么来的,怎么是这个样子

状态向量(State Vector)

状态向量描述系统在某个时间点的完整状态。它通常包括多个变量,例如位置、速度、加速度等,具体取决于系统的动态特性。

  • 记作 x k \mathbf{x}_k xk,其中 k k k 是时间步长。

状态转移矩阵(State Transition Matrix)

状态转移矩阵描述系统从一个时间点到下一个时间点的状态变化。它反映了状态向量的演化。

  • 记作 A k \mathbf{A}_k Ak,用于将状态向量从 x k − 1 \mathbf{x}_{k-1} xk1 转移到 x k \mathbf{x}_k xk
    x k = A k − 1 x k − 1 + B k − 1 u k − 1 + w k − 1 \mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} + \mathbf{w}_{k-1} xk=Ak1xk1+Bk1uk1+wk1

  • 状态向量与状态转移矩阵:状态转移矩阵 A k \mathbf{A}_k Ak 描述了状态向量 x k \mathbf{x}_k xk 如何从时间 k − 1 k-1 k1 转移到时间 k k k。例如,对于一个简单的运动模型,状态向量可能包括位置和速度,而状态转移矩阵描述了位置和速度在每个时间步长中的变化。例如,对于一个匀速直线运动模型,状态向量和状态转移矩阵可以表示为: x k = [ x k x ˙ k ] , A k = [ 1 Δ t 0 1 ] \mathbf{x}_k = \begin{bmatrix} x_k \\ \dot{x}_k \end{bmatrix}, \quad \mathbf{A}_k = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} xk=[xkx˙k],Ak=[10Δt1]这里, Δ t \Delta t Δt 是时间步长。

假设我们要跟踪一个在平面上运动的物体,其状态包括位置和速度:

  • 状态向量 x k \mathbf{x}_k xk: x k = [ x k y k x ˙ k y ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \dot{x}_k \\ \dot{y}_k \end{bmatrix} xk= xkykx˙ky˙k 这里 x k x_k xk y k y_k yk 是位置, x ˙ k \dot{x}_k x˙k y ˙ k \dot{y}_k y˙k 是速度。
  • 状态转移矩阵 A k \mathbf{A}_k Ak: A k = [ 1 0 Δ t 0 0 1 0 Δ t 0 0 1 0 0 0 0 1 ] \mathbf{A}_k = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Ak= 10000100Δt0100Δt01 这表示位置随时间步长 Δ t \Delta t Δt 变化。
状态预测

给定当前时间步长 k − 1 k-1 k1 的状态向量 x k − 1 \mathbf{x}_{k-1} xk1 和状态转移矩阵 A k − 1 \mathbf{A}_{k-1} Ak1,下一个时间步长 k k k 的预测状态向量 x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1 可以表示为:
x ^ k ∣ k − 1 = A k − 1 x k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1xk1+Bk1uk1

  • A k − 1 \mathbf{A}_{k-1} Ak1 是状态转移矩阵,描述了系统的动态特性。
  • B k − 1 \mathbf{B}_{k-1} Bk1 是控制输入矩阵,描述了控制输入如何影响系统状态。
  • u k − 1 \mathbf{u}_{k-1} uk1 是控制输入向量,包含外部施加的控制量。
误差协方差预测

误差协方差矩阵 P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1 也需要更新,以反映预测状态的不确定性。预测步骤的误差协方差矩阵更新公式为:
P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1

  • P k − 1 ∣ k − 1 \mathbf{P}_{k-1|k-1} Pk1∣k1 是当前时间步长 k − 1 k-1 k1 的误差协方差矩阵。
  • Q k − 1 \mathbf{Q}_{k-1} Qk1 是过程噪声协方差矩阵,反映了模型中未捕捉到的不确定性。

例子

假设我们要跟踪一个在平面上运动的物体,其状态向量包括位置和速度:
x k = [ x k y k x ˙ k y ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \dot{x}_k \\ \dot{y}_k \end{bmatrix} xk= xkykx˙ky˙k
假设物体做匀速直线运动,状态转移矩阵可以表示为:
A = [ 1 0 Δ t 0 0 1 0 Δ t 0 0 1 0 0 0 0 1 ] \mathbf{A} = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A= 10000100Δt0100Δt01
在没有控制输入的情况下,预测状态的计算如下:
x ^ k ∣ k − 1 = A x k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} x^kk1=Axk1
假设上一时间步长的状态向量为:
x k − 1 = [ 10 15 1 − 1 ] \mathbf{x}_{k-1} = \begin{bmatrix} 10 \\ 15 \\ 1 \\ -1 \end{bmatrix} xk1= 101511
其中,物体在位置 ( 10 , 15 ) (10, 15) (10,15) 处,速度为 ( 1 , − 1 ) (1, -1) (1,1) 米每秒,时间步长 Δ t = 1 \Delta t = 1 Δt=1 秒。

状态转移计算为:
x ^ k ∣ k − 1 = [ 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 ] [ 10 15 1 − 1 ] = [ 10 + 1 15 − 1 1 − 1 ] = [ 11 14 1 − 1 ] \hat{\mathbf{x}}_{k|k-1} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 15 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 10 + 1 \\ 15 - 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 11 \\ 14 \\ 1 \\ -1 \end{bmatrix} x^kk1= 1000010010100101 101511 = 10+115111 = 111411
因此,通过状态转移矩阵,得到了下一个时间步长的预测状态向量 x ^ k ∣ k − 1 = [ 11 14 1 − 1 ] \hat{\mathbf{x}}_{k|k-1} = \begin{bmatrix} 11 \\ 14 \\ 1 \\ -1 \end{bmatrix} x^kk1= 111411

在卡尔曼滤波中,控制输入(control input)指的是系统在每个时间步长可以施加的外部影响或干预。控制输入常用于表示可以影响系统状态的外部因素,例如驾驶员对汽车的操控、无人机的推力指令等。

控制输入的作用

控制输入用于描述外部控制如何影响系统状态的变化。它在状态转移方程中起到了修正预测状态的作用,帮助更准确地反映系统的动态。

控制输入的数学描述

状态转移方程中引入控制输入项,使状态更新更全面:
x k = A k − 1 x k − 1 + B k − 1 u k − 1 + w k − 1 \mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} + \mathbf{w}_{k-1} xk=Ak1xk1+Bk1uk1+wk1
其中:

  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵,描述系统的内在动力学。
  • B k − 1 \mathbf{B}_{k-1} Bk1:控制输入矩阵,描述控制输入对系统状态的影响。
  • u k − 1 \mathbf{u}_{k-1} uk1:控制输入向量,表示外部施加的控制。
  • w k − 1 \mathbf{w}_{k-1} wk1:过程噪声,表示模型中未捕捉到的随机扰动。

示例

假设我们在跟踪一辆汽车,状态向量包括位置和速度:
x k = [ x k x ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ \dot{x}_k \end{bmatrix} xk=[xkx˙k]

无控制输入的情况

状态转移矩阵假设汽车做匀速运动:
A = [ 1 Δ t 0 1 ] \mathbf{A} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} A=[10Δt1]
预测下一时间步的状态为:
x ^ k ∣ k − 1 = A x k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} x^kk1=Axk1

有控制输入的情况

假设汽车可以通过加速或减速改变速度,控制输入向量表示加速度:
u k = a k \mathbf{u}_k = a_k uk=ak
控制输入矩阵描述加速度对速度和位置的影响:
B = [ 0.5 Δ t 2 Δ t ] \mathbf{B} = \begin{bmatrix} 0.5 \Delta t^2 \\ \Delta t \end{bmatrix} B=[0.5Δt2Δt]
状态转移方程引入控制输入后变为:
x ^ k ∣ k − 1 = A x k − 1 + B u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} + \mathbf{B} \mathbf{u}_{k-1} x^kk1=Axk1+Buk1

具体计算

假设上一时间步的状态向量为:
x k − 1 = [ 10 5 ] \mathbf{x}_{k-1} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} xk1=[105]
其中,位置为10米,速度为5米每秒。时间步长 Δ t = 1 \Delta t = 1 Δt=1 秒。

如果加速度为2米每秒平方( a k = 2 a_k = 2 ak=2),则控制输入向量为:
u k − 1 = 2 \mathbf{u}_{k-1} = 2 uk1=2
状态转移矩阵和控制输入矩阵为:
A = [ 1 1 0 1 ] , B = [ 0.5 1 ] \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} A=[1011],B=[0.51]
预测下一时间步的状态为:
x ^ k ∣ k − 1 = A x k − 1 + B u k − 1 = [ 1 1 0 1 ] [ 10 5 ] + [ 0.5 1 ] ⋅ 2 = [ 15 5 ] + [ 1 2 ] = [ 16 7 ] \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} + \mathbf{B} \mathbf{u}_{k-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 5 \end{bmatrix} + \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \cdot 2 = \begin{bmatrix} 15 \\ 5 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 7 \end{bmatrix} x^kk1=Axk1+Buk1=[1011][105]+[0.51]2=[155]+[12]=[167]
因此,通过引入控制输入,预测得到下一时间步的位置为16米,速度为7米每秒。

在卡尔曼滤波中,测量向量通过观测矩阵可以得到与实际测量值进行比较的预测测量值。这是滤波器更新步骤中的一个关键部分,用于校正预测的状态。

这篇关于DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059425

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X