poj 3358 Period of an Infinite Binary Expansion(数论:欧拉函数+快速幂取模)

本文主要是介绍poj 3358 Period of an Infinite Binary Expansion(数论:欧拉函数+快速幂取模),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不太好理解题意的一道题

给出一个除式

要求找到对应二进制的循环起点和最小循环节长度

这里还考察了分数化小数的知识点。。。

这点不会难怪看题解都觉得很吃力尴尬

1/10

分数化小数的规律如下:

0.1 0.2 0.4 0.8 1.6 1.2 0.4(每次取左侧一位×2,如果大于10,小数位取1,再把这一位%10)

0    0    0   0    1    1    0

以1/10为例:1/10 2/10 4/10 8/10 16/10 32/10 64/10....

取模后:1/10 2/10 4/10 8/10 6/10 2/10 4/10 

这不就是个循环吗?循环节为4,循环起点为2,正好与题目相符。。如何去找循环节和循环起点?

由于是二进制,所以分子可以表示为2^x,而模数即q

2^x=2^y(mod q),2^x(2^(y-x)-1)=0(mod q),即p|2^x(2^(y-x)-1)

因为x^(y-1)-1为奇数,所以p|2^x

首先把q尽量整除2直到不能整除为止,这个步骤的次数就是满足原式最小的x,并得到q'。

2^(y-x)=1(mod q')

根据欧拉定理,t=y-x=phi(q')满足此式。

因为2^phi(q')和q'的最大公约数可能不为1

所以不一定是最小值,需要枚举phi(q')约数。

用int交就WA,用long long就过了

代码如下:

<span style="font-size:18px;">#include <cmath>
#include <vector>
#include <cstdio>
#include <iostream>
#include <algorithm>
#define LL long long
using namespace std;char str[100];
vector<LL> vec;LL gcd(LL a, LL b) {return b ? gcd(b, a%b) : a;
}LL euler_phi(LL n) {LL ans = n;LL m = sqrt(n+0.5);for(LL i=2; i<=m; ++i) {if(n%i == 0) {n /= i;ans = ans/i*(i-1);while(n%i == 0)n /= i;}}if(n > 1)ans = ans/n*(n-1);return ans;
}void get_fac(LL n) {LL m = sqrt(n+0.5);for(LL i=1; i<=m; ++i) {if(n%i == 0) {vec.push_back(i);if(n/i != i)vec.push_back(n/i);}}
}LL pow_mod(LL a, LL b, LL m) {LL ans = 1;while(b) {if(b & 1) {ans = ans*a%m;}a = a*a%m;b >>= 1;}return ans%m;
}int main(void) {char ch;LL cas = 0, tmp, x, y, p, q;while(scanf("%s", str) != EOF) {vec.clear();sscanf(str, "%lld%c%lld", &p, &ch, &q);if(!p) {printf("Case #%lld: 1,1\n", ++cas);continue;}//printf("p = %d\tq = %d\n", p, q);tmp = gcd(p, q);p /= tmp;q /= tmp;x = 1;while(q % 2 == 0) {q >>= 1;++x;}tmp = euler_phi(q);get_fac(tmp);sort(vec.begin(), vec.end());for(int i=0; i<vec.size(); ++i) {if(pow_mod(2, vec[i], q) == 1) {y = vec[i];break;}}printf("Case #%lld: %lld,%lld\n", ++cas, x, y);}return 0;
}</span>



这篇关于poj 3358 Period of an Infinite Binary Expansion(数论:欧拉函数+快速幂取模)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059206

相关文章

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int