联邦学习论文阅读:2018 Federated learning with non-IID data

2024-06-14 01:12

本文主要是介绍联邦学习论文阅读:2018 Federated learning with non-IID data,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

这是一篇2018年挂在arXiv上的文章,是一篇针对FL中数据Non-IID的工作。
作者发现,对于高度Non-IID的数据集,FedAvg的准确性下降了55%。
作者提出了可以用权重散度(weight divergence)来解释这种性能下降,这个权重散度用各client上的数据类别分布与总体分布之间的EMD(earth mover’s distance)来量化。

关于什么是EMD,gpt这样说:
EMD(Earth Mover’s Distance,即地球搬运距离)是一种度量两个分布之间差异的方法。其基本思想来源于土方工程,即计算将一个堆土变成另一个堆土所需的最小工作量。
具体来说,EMD用于度量两个概率分布之间的差异,特别是在多维空间中。假设有两个概率分布P和Q,它们分别由一组加权点组成,EMD计算的是将分布P转换为分布Q所需的最小代价。
计算EMD的一般步骤如下:

  1. 定义分布:两个分布P和Q分别由若干个点和其对应的权重(或质量)组成。
  2. 构建流量矩阵:确定从分布P的每个点到分布Q的每个点的流量(即将多少质量从一个点移动到另一个点)。
  3. 计算流动成本:每个点的流动成本通常是两个点之间的距离乘以流量。
  4. 优化流动方案:通过优化算法(如线性规划),找到总流动成本最小的方案,即EMD。

数学上,EMD可以被表述为一个线性规划问题。其目标函数是:

EMD ( P , Q ) = min ⁡ ∑ i = 1 m ∑ j = 1 n f i j d i j \text{EMD}(P, Q) = \min \sum_{i=1}^m \sum_{j=1}^n f_{ij} d_{ij} EMD(P,Q)=mini=1mj=1nfijdij
其中,f_{ij}表示从分布P的第i个点到分布Q的第j个点的流量,d_{ij}表示这两个点之间的距离。约束条件包括:

  • 从P的每个点流出的总流量不能超过该点的权重。
  • 到达Q的每个点的总流量不能超过该点的权重。
  • 所有流量的总和应等于两个分布总权重的较小值。

EMD在计算机视觉、图像处理和模式识别等领域中有广泛应用,特别是在图像检索中,用于比较不同图像的特征分布。

作者提出了一个策略用于解决Non-IID,那就是server来创建一小部分共享数据集来提升模型acc。这显然是一种centralization-accuracy的trade-off。

实验

作者用了三个数据集:MNIST、Cifar-10、Speech Commands dataset(一个语音数据集)划分出的KWS数据集。这三个数据集的output classes都是10。
数据集划分方面,做了三种划分:

  1. iid:均匀分配给10个client;
  2. non-iid(1):每个client只有一类的数据,总共10个client;
  3. non-iid(2):每个client有两类的数据,总共10个client;

image.png
根据上图可知以下实验结论:
1、 IID数据下联邦学习和正常中心式的SGD训练结果基本一致;
2、 non-IID 会导致准确度下降,而且Non-IID(1)相对Non-IID(2)下降的更多,减少本地训练epoch增加通信频率可以一定程度降低损失,但是作用不大;
3、一个有意思的点是,用SGD预训练的模型刚刚开始结果就不错,但在CIFAR-10上在 non-IID 数据上训练还会降低精度;

分析

作者给出了权重散度weight divergence的定义公式:
weight divergence = ∣ ∣ w FedAvg − w SGD ∣ ∣ ∣ ∣ w SGD ∣ ∣ \text{weight divergence}=\frac{||w^{\text{FedAvg}}-w^{\text{SGD}}||}{||w^{\text{SGD}}||} weight divergence=∣∣wSGD∣∣∣∣wFedAvgwSGD∣∣
image.png
接下来,作者分析weight divergence分歧的根本原因是client的数据分布与总体数据分布之间的距离,这个距离可以用EMD来评估。
image.png
然后就是一顿数学推导,得到这样一个公式:
image.png
上图中圈出的两部分就是误差的两个来源,分别是:

  1. 之前累计的梯度误差;
  2. 本次迭代产生的分布误差;

此外,作者根据公式得出两个结论:

  1. 开始训练时,各client的初始化权重最好一样;
  2. EMD被定义为image.png

接下来,作者探究了EMD与weight divergence和test acc的关系:
image.png
image.png

改进方法

作者提出让server创建一个全局可共享的小部分数据集给各client。实验表明,仅用5%的全局数据,可以提高test acc约30%。
此外,server首次分发给client的模型可以是在这小部分数据集上预训练过的。
image.png
如上图所示,整个过程涉及到两个trade-off:

  1. test acc和 β = ∣ ∣ G ∣ ∣ ∣ ∣ D ∣ ∣ × 100 % \beta=\frac{||G||}{||D||}\times 100\% β=∣∣D∣∣∣∣G∣∣×100%的trade-off,其中G为全局可共享数据集的样本量,D为所有client的样本量和。
  2. test acc和 α \alpha α的tarde-off,其中 α \alpha α为server分给client的样本量与server全局可共享数据集的比值。

作者表示,这个策略只用于整个训练过程初始化的时候,所以通信成本不是主要问题,此外,全局可共享的数据集和client数据集是分开了,不会有隐私威胁。

这篇关于联邦学习论文阅读:2018 Federated learning with non-IID data的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058959

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识