从 poj 1163( The Triangle )教你彻底学会动态规划——入门篇

2024-06-13 20:38

本文主要是介绍从 poj 1163( The Triangle )教你彻底学会动态规划——入门篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      动态规划相信大家都知道,动态规划算法也是新手在刚接触算法设计时很苦恼的问题,有时候觉得难以理解,但是真正理解之后,就会觉得动态规划其实并没有想象中那么难。网上也有很多关于讲解动态规划的文章,大多都是叙述概念,讲解原理,让人觉得晦涩难懂,即使一时间看懂了,发现当自己做题的时候又会觉得无所适从。我觉得,理解算法最重要的还是在于练习,只有通过自己练习,才可以更快地提升。话不多说,接下来,下面我就通过一个例子来一步一步讲解动态规划是怎样使用的,只有知道怎样使用,才能更好地理解,而不是一味地对概念和原理进行反复琢磨。

     首先,我们看一下这道题(此题目来源于北大POJ):

     数字三角形(POJ1163)

    

     在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或 右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0 - 99

    输入格式:

    5      //表示三角形的行数    接下来输入三角形

    7

    3   8

    8   1   0

    2   7   4   4

    4   5   2   6   5

    要求输出最大和

    接下来,我们来分析一下解题思路:

    首先,肯定得用二维数组来存放数字三角形

    然后我们用D( r ,  j) 来表示第 r 行 第 j 个数字( r , j 从1开始算)

    我们用MaxSum(r ,  j)表示从D(r , j)到底边的各条路径中(当然也可以说成是从底边到D(r , j)的最路径),最佳路径的数字之和。

    因此,此题的最终问题就变成了求 MaxSum(1,1)。(这里是说数组从[1,1]开始存。[0,0]直接空掉)

    当我们看到这个题目的时候,首先想到的就是可以用简单的递归来解题:

    D(r ,  j)出发,下一步只能走D(r+1 , j)或者D(r+1 ,  j+1)。故对于N行的三角形,我们可以写出如下的递归式:   

if ( r == N)                MaxSum(r,j) = D(r,j)  //因为是从底边往上走,所以最后一层(即是底边)为最大值。
else      MaxSum(r,j) = Max{ MaxSum(r+1,j), MaxSum(r+1,j+1) } + D(r,j) 

    根据上面这个简单的递归式,我们就可以很轻松地写出完整的递归代码: 

#include <iostream>  
#include <algorithm> 
#define MAX 101  
using namespace std; 
int D[MAX][MAX];  
int n;  
int MaxSum(int i, int j){    if(i==n)  return D[i][j];    int x = MaxSum(i+1,j);    int y = MaxSum(i+1,j+1);    return max(x,y)+D[i][j];  
}
int main(){    int i,j;    cin >> n;    for(i=1;i<=n;i++)   for(j=1;j<=i;j++)        cin >> D[i][j];    cout << MaxSum(1,1) << endl;  
}      

    对于如上这段递归的代码,当我提交到POJ时,会显示如下结果:

    

    对的,代码运行超时了,为什么会超时呢?

    答案很简单,因为我们重复计算了,当我们在进行递归时,计算机帮我们计算的过程如下图:

    

      就拿第三行数字1 来说,当我们计算从第2行 的数字3 开始的MaxSum时会计算出从1开始的MaxSum,我们计算从第二行的数字8开始的MaxSum的时候又会计算一次从1开始的MaxSum也就是说有重复计算。这样就浪费了大量的时间。也就是说如果采用递规的方法,深度遍历每条路径,存在大量重复计算。则时间复杂度为 2的n次方,对于 n = 100 行,肯定超时。 

     接下来,我们就要考虑如何进行改进,我们自然而然就可以想到如果每算出一个MaxSum(r,j)就保存起来,下次用到其值的时候直接取用,则可免去重复计算。那么可以用n方的时间复杂度完成计算。因为三角形的数字总数是 n(n+1)/2

    根据这个思路,我们就可以将上面的代码进行改进,使之成为记忆递归型的动态规划程序: 

#include <iostream>  
#include <algorithm> 
using namespace std;#define MAX 101int D[MAX][MAX];    
int n;  
int maxSum[MAX][MAX]; //记忆动态规划开辟的数组///*int MaxSum(int i, int j){      if( maxSum[i][j] != -1 )         return maxSum[i][j]; //记忆递归动态规划///* if(i==n)   maxSum[i][j] = D[i][j];     else{    int x = MaxSum(i+1,j);       int y = MaxSum(i+1,j+1);       maxSum[i][j] = max(x,y)+ D[i][j];     }     return maxSum[i][j]; 
} 
int main(){    int i,j;    cin >> n;    for(i=1;i<=n;i++)   for(j=1;j<=i;j++) {       cin >> D[i][j];       maxSum[i][j] = -1;   }    cout << MaxSum(1,1) << endl; 
} 

    当我们提交如上代码时,结果就是一次AC

    

    虽然在短时间内就AC了。但是,我们并不能满足于这样的代码,因为递归总是需要使用大量堆栈上的空间,很容易造成栈溢出,我们现在就要考虑如何把递归转换为递推,让我们一步一步来完成这个过程。

    我们首先需要计算的是最后一行,因此可以把最后一行直接写出,如下图:

    

      现在开始分析倒数第二行的每一个数,现分析数字2,2可以和最后一行4相加,也可以和最后一行的5相加,但是很显然和5相加要更大一点,结果为7,我们此时就可以将7保存起来,然后分析数字7,7可以和最后一行的5相加,也可以和最后一行的2相加,很显然和5相加更大,结果为12,因此我们将12保存起来。以此类推。。我们可以得到下面这张图:

    

     然后按同样的道理分析倒数第三行和倒数第四行,最后分析第一行,我们可以依次得到如下结果:

    

    

    上面的推导过程相信大家不难理解,理解之后我们就可以写出如下的递推型动态规划程序: 

#include <iostream>  
#include <algorithm> 
using namespace std; #define MAX 101  int D[MAX][MAX];   
int n;  
int maxSum[MAX][MAX]; 
int main(){    int i,j;    cin >> n;    for(i=1;i<=n;i++)   for(j=1;j<=i;j++)        cin >> D[i][j];   for( int i = 1;i <= n; ++ i )     maxSum[n][i] = D[n][i];   for( int i = n-1; i>= 1;  --i )     for( int j = 1; j <= i; ++j )         maxSum[i][j] = max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j];    cout << maxSum[1][1] << endl;  
} 

     我们的代码仅仅是这样就够了吗?当然不是,我们仍然可以继续优化,而这个优化当然是对于空间进行优化,其实完全没必要用二维maxSum数组存储每一个MaxSum(r,j),只要从底层一行行向上递推,那么只要一维数组maxSum[100]即可,即只要存储一行的MaxSum值就可以。

     对于空间优化后的具体递推过程如下:

    

    

    

    

    

    

    接下里的步骤就按上图的过程一步一步推导就可以了。进一步考虑,我们甚至可以连maxSum数组都可以不要,直接用D的第n行直接替代maxSum即可。但是这里需要强调的是:虽然节省空间,但是时间复杂度还是不变的。

    依照上面的方式,我们可以写出如下代码:    

#include <iostream>  
#include <algorithm> 
using namespace std; #define MAX 101  int D[MAX][MAX];  
int n; 
int * maxSum; int main(){    int i,j;    cin >> n;    for(i=1;i<=n;i++)   for(j=1;j<=i;j++)        cin >> D[i][j];   maxSum = D[n]; //maxSum指向第n行    for( int i = n-1; i>= 1;  --i )     for( int j = 1; j <= i; ++j )       maxSum[j] = max(maxSum[j],maxSum[j+1]) + D[i][j];    cout << maxSum[1] << endl;  
}

 

     接下来,我们就进行一下总结:

     递归到动态规划的一般转化方法

     递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。

    动态规划解题的一般思路

    1 将原问题分解为子问题

  •         把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
  •        子问题的解一旦求出就会被保存,所以每个子问题只需求解一次

    2 确定状态

  •        在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
  •        所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。

       整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。

    3 确定一些初始状态(边界状态)的值

    以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

    4 确定状态转移方程

     定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

    数字三角形的状态转移方程: 

    
  

    能用动态规划解决的问题的特点

    1) 问题具有最优子结构性质如果问题的最优解所包含的 子问题的解也是最优的,我们就称该问题具有最优子结 构性质。

    2) 无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

好久没看博客发现这篇文章现在已经这么火热了,看了一下评论发现不少人对这篇文章都比较有兴趣,我当初写这篇文章是受到了Coursera上面一门算法课程的启发,大家有兴趣可以去听听这门课程:数据结构与算法

 

 

 

这篇关于从 poj 1163( The Triangle )教你彻底学会动态规划——入门篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058364

相关文章

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...