OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用

本文主要是介绍OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

1.功能描述

ShapeContextDistanceExtractor是OpenCV库中的一个类,主要用于计算形状之间的相似度或距离。它是基于形状上下文(Shape Context)特征描述符的,这是一种在计算机视觉和图像处理领域广泛使用的形状匹配技术。该方法由Belongie等人在2000年代初提出,通过分析形状边界点的邻域分布来描述形状特征,进而计算形状间的相似度。

2.使用场景

形状匹配:在图像数据库中查找相似的形状或对象。
物体识别:作为特征提取的一部分,辅助分类或识别任务。
内容基于的图像检索:根据形状内容搜索图像。

3.函数computeDistance

计算由其轮廓定义的两个形状之间的形状距离,首先提取每个轮廓的关键点及其邻域信息,然后通过比较不同轮廓间对应关键点的邻域分布差异来量化形状间的距离。

3.1函数原型


virtual float cv::ShapeDistanceExtractor::computeDistance	(
InputArray 	contour1,
InputArray 	contour2 
)		

3.2 参数

  • 参数contour1 定义第一个形状的轮廓.
  • 参数contour2 定义第二个形状的轮廓…

4 示例代码

#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/shape.hpp"#include <iostream>
#include <opencv2/core/utility.hpp>
#include <string>
using namespace std;
using namespace cv;static vector< Point > simpleContour( const Mat& currentQuery, int n = 300 )
{vector< vector< Point > > _contoursQuery;vector< Point > contoursQuery;findContours( currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE );for ( size_t border = 0; border < _contoursQuery.size(); border++ ){for ( size_t p = 0; p < _contoursQuery[ border ].size(); p++ ){contoursQuery.push_back( _contoursQuery[ border ][ p ] );}}// In case actual number of points is less than nint dummy = 0;for ( int add = ( int )contoursQuery.size() - 1; add < n; add++ ){contoursQuery.push_back( contoursQuery[ dummy++ ] );  // adding dummy values}// 均匀采样cv::randShuffle( contoursQuery );vector< Point > cont;for ( int i = 0; i < n; i++ ){cont.push_back( contoursQuery[ i ] );}return cont;
}
int main( int argc, char** argv )
{string path = "/media/dingxin/data/study/OpenCV/sources/images/shape/";cv::Ptr< cv::ShapeContextDistanceExtractor > mysc = cv::createShapeContextDistanceExtractor();Size sz2Sh( 300, 300 );stringstream queryName;int indexQuery = 1;queryName << path << indexQuery << ".jpg";Mat query = imread( queryName.str(), IMREAD_GRAYSCALE );Mat queryToShow;resize( query, queryToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "QUERY", queryToShow );moveWindow( "TEST", 0, 0 );vector< Point > contQuery = simpleContour( query );int bestMatch             = 0;float bestDis             = FLT_MAX;for ( int ii = 1; ii <= 4; ii++ ){if ( ii == indexQuery )continue;waitKey( 30 );stringstream iiname;iiname << path << ii << ".jpg";cout << "name: " << iiname.str() << endl;Mat iiIm = imread( iiname.str(), 0 );Mat iiToShow;resize( iiIm, iiToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "TEST", iiToShow );moveWindow( "TEST", sz2Sh.width + 50, 0 );vector< Point > contii = simpleContour( iiIm );float dis              = mysc->computeDistance( contQuery, contii );//获取匹配度最佳的id和匹配距离值if ( dis < bestDis ){bestMatch = ii;bestDis   = dis;}std::cout << " distance between " << queryName.str() << " and " << iiname.str() << " is: " << dis << std::endl;}destroyWindow( "TEST" );stringstream bestname;bestname << path << bestMatch << ".jpg";Mat iiIm = imread( bestname.str(), 0 );Mat bestToShow;resize( iiIm, bestToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "BEST MATCH", bestToShow );moveWindow( "BEST MATCH", sz2Sh.width + 50, 0 );waitKey();return 0;
}

运行结果

我一共选了4张图,拿第一张图跟其他三张图比较,看哪个图跟第一张图里的足球形状匹配的最好。四张图如下:

运行结果:
在这里插入图片描述
命令行输出结果:
在这里插入图片描述

这篇关于OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058139

相关文章

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

C#中Trace.Assert的使用小结

《C#中Trace.Assert的使用小结》Trace.Assert是.NET中的运行时断言检查工具,用于验证代码中的关键条件,下面就来详细的介绍一下Trace.Assert的使用,具有一定的参考价值... 目录1、 什么是 Trace.Assert?1.1 最简单的比喻1.2 基本语法2、⚡ 工作原理3

C# IPAddress 和 IPEndPoint 类的使用小结

《C#IPAddress和IPEndPoint类的使用小结》本文主要介绍了C#IPAddress和IPEndPoint类的使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录一、核心作用网络编程基础类二、IPAddress 类详解三种初始化方式1. byte 数组初始化2. l

C语言逗号运算符和逗号表达式的使用小结

《C语言逗号运算符和逗号表达式的使用小结》本文详细介绍了C语言中的逗号运算符和逗号表达式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 在C语言中逗号“,”也是一种运算符,称为逗号运算符。 其功能是把两个表达式连接其一般形式为:表达