OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用

本文主要是介绍OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

1.功能描述

ShapeContextDistanceExtractor是OpenCV库中的一个类,主要用于计算形状之间的相似度或距离。它是基于形状上下文(Shape Context)特征描述符的,这是一种在计算机视觉和图像处理领域广泛使用的形状匹配技术。该方法由Belongie等人在2000年代初提出,通过分析形状边界点的邻域分布来描述形状特征,进而计算形状间的相似度。

2.使用场景

形状匹配:在图像数据库中查找相似的形状或对象。
物体识别:作为特征提取的一部分,辅助分类或识别任务。
内容基于的图像检索:根据形状内容搜索图像。

3.函数computeDistance

计算由其轮廓定义的两个形状之间的形状距离,首先提取每个轮廓的关键点及其邻域信息,然后通过比较不同轮廓间对应关键点的邻域分布差异来量化形状间的距离。

3.1函数原型


virtual float cv::ShapeDistanceExtractor::computeDistance	(
InputArray 	contour1,
InputArray 	contour2 
)		

3.2 参数

  • 参数contour1 定义第一个形状的轮廓.
  • 参数contour2 定义第二个形状的轮廓…

4 示例代码

#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/shape.hpp"#include <iostream>
#include <opencv2/core/utility.hpp>
#include <string>
using namespace std;
using namespace cv;static vector< Point > simpleContour( const Mat& currentQuery, int n = 300 )
{vector< vector< Point > > _contoursQuery;vector< Point > contoursQuery;findContours( currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE );for ( size_t border = 0; border < _contoursQuery.size(); border++ ){for ( size_t p = 0; p < _contoursQuery[ border ].size(); p++ ){contoursQuery.push_back( _contoursQuery[ border ][ p ] );}}// In case actual number of points is less than nint dummy = 0;for ( int add = ( int )contoursQuery.size() - 1; add < n; add++ ){contoursQuery.push_back( contoursQuery[ dummy++ ] );  // adding dummy values}// 均匀采样cv::randShuffle( contoursQuery );vector< Point > cont;for ( int i = 0; i < n; i++ ){cont.push_back( contoursQuery[ i ] );}return cont;
}
int main( int argc, char** argv )
{string path = "/media/dingxin/data/study/OpenCV/sources/images/shape/";cv::Ptr< cv::ShapeContextDistanceExtractor > mysc = cv::createShapeContextDistanceExtractor();Size sz2Sh( 300, 300 );stringstream queryName;int indexQuery = 1;queryName << path << indexQuery << ".jpg";Mat query = imread( queryName.str(), IMREAD_GRAYSCALE );Mat queryToShow;resize( query, queryToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "QUERY", queryToShow );moveWindow( "TEST", 0, 0 );vector< Point > contQuery = simpleContour( query );int bestMatch             = 0;float bestDis             = FLT_MAX;for ( int ii = 1; ii <= 4; ii++ ){if ( ii == indexQuery )continue;waitKey( 30 );stringstream iiname;iiname << path << ii << ".jpg";cout << "name: " << iiname.str() << endl;Mat iiIm = imread( iiname.str(), 0 );Mat iiToShow;resize( iiIm, iiToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "TEST", iiToShow );moveWindow( "TEST", sz2Sh.width + 50, 0 );vector< Point > contii = simpleContour( iiIm );float dis              = mysc->computeDistance( contQuery, contii );//获取匹配度最佳的id和匹配距离值if ( dis < bestDis ){bestMatch = ii;bestDis   = dis;}std::cout << " distance between " << queryName.str() << " and " << iiname.str() << " is: " << dis << std::endl;}destroyWindow( "TEST" );stringstream bestname;bestname << path << bestMatch << ".jpg";Mat iiIm = imread( bestname.str(), 0 );Mat bestToShow;resize( iiIm, bestToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "BEST MATCH", bestToShow );moveWindow( "BEST MATCH", sz2Sh.width + 50, 0 );waitKey();return 0;
}

运行结果

我一共选了4张图,拿第一张图跟其他三张图比较,看哪个图跟第一张图里的足球形状匹配的最好。四张图如下:

运行结果:
在这里插入图片描述
命令行输出结果:
在这里插入图片描述

这篇关于OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058139

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W