代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离

本文主要是介绍代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.判断子序列

代码随想录

代码:

class Solution {
public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size() + 1,vector<int>(t.size() + 1,0));// 判断s和t的公共最长子序列的长度是否和s的长度相等// dp[i][j]表示下标为0~i-1的s的子数组和下标为0~j-1的子数组的最长公共子序列的长度for(int i = 1; i <= s.size(); i++){for(int j = 1; j <= t.size(); j++){if(s[i - 1] == t[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}if(dp[s.size()][t.size()] == s.size()){return true;}else{return false;}}
};

 思路:

        这题就是判断两个字符串的最长公共子序列是不是s。其实套路都一样。下面的都是copy昨天的。

        dp数组的含义:dp[i][j]表示下标为0~i-1和0~j-1字符串的最长公共子序列的长度。注意到了吗,只是求这两个字符串的最长公共子序列,没有要求一定要以什么东西结尾。所以最后一个元素就是dp数组中最大的那个元素。

        dp数组的初始化:dp[0][j]和dp[i][0]都没有实际意义,而且为了能够推出符合实际意义的dp[1][1]应该把这些元素初始化为0

        dp数组的递推公式:如果此时的i-1和j-1下标对应的元素都相等,那就可以在dp[i - 1][j - 1]的基础上加一了。如果不相等,就说明这两元素有互斥的关系,两个元素不可能同时被选到最长公共子序列中。所以我们可以分两种情况:dp[i - 1][j]或dp[i][j - 1],取两个的最大值。

        dp数组的遍历顺序:正序遍历。

2.不同的子序列

代码随想录 (programmercarl.com)

代码:

class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size() + 1,vector<uint64_t>(t.size() + 1,0));// dp[i][j]表示s中下标为0~i-1的字串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法// 根据定义进行初始化// dp[0][j]表示在空串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法// 很明显没有for(int i = 0; i <= s.size(); i++){// dp[i][0]表示s中下标为0~i-1的字串有多少种删除元素后可以变成空串的方法// 很明显是一种,就是删除所有元素 dp[0][0]也满足dp[i][0] = 1;}for(int i = 1; i <= s.size(); i++){for(int j = 1; j <= t.size(); j++){if(s[i - 1] == t[j - 1]){dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];// 注意这里dp数组的含义是方法数!!!// 一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。// 一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。}else{dp[i][j] = dp[i - 1][j];}}}return dp[s.size()][t.size()];}
};

 思路:

        dp数组的含义: dp[i][j]表示s中下标为0~i-1的字串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法

        dp数组的初始化:dp[0][j]表示在空串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法,很明显没有;dp[i][0]表示s中下标为0~i-1的字串有多少种删除元素后可以变成空串的方法很明显是一种,就是删除所有元素。(dp[0][0]也满足)

        dp数组的递推公式:注意这里dp数组的含义是方法数!!!
                    一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
                    一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

        dp数组的遍历顺序:正序遍历

uint64_t 是 C/C++ 语言中的整数数据类型,它表示无符号的 64 位整数。在标准头文件 <cstdint> 中定义,并且可用于确保在不同平台上具有相同大小的无符号 64 位整数。uint64_t 类型通常用于需要大范围整数值的情况,例如处理大量数据或需要确保数值不为负的情况。

3.两个字符串的删除操作

 代码随想录 (programmercarl.com)

代码: (正面思考。去模拟删除过程)

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小步数for(int i = 0; i <= word1.size(); i++){dp[i][0] = i;}for(int j = 0; j <= word2.size(); j++){dp[0][j] = j;}// 递推for(int i = 1; i <= word1.size();i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1]; // 新加的两个元素本来就相同,不需要做任何操作}else{dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i - 1][j - 1] + 2));// 新加进来的元素不同,要不删掉其中一个,要不两个都删了}}}return dp[word1.size()][word2.size()];}
};

思路: 

        dp数组的含义:dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小步数

        dp数组的递推公式:新加的两个元素本来就相同,不需要做任何操作 dp[i][j] = dp[i - 1][j - 1];新加的两个两个元素不同,要不删掉其中一个,要不两个都删了。dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i - 1][j - 1] + 2))

        dp数组的初始化:按照定义初始化就好了。

        dp数组的遍历顺序:正序遍历

代码:(反面来思考。用最少的操作剩下的子序列,不就是最长公共子序列吗?只要做一下减法就好了)

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j]表示dp[i][j]表示下标为0~i-1和0~j-1字符串的最长公共子序列的长度。for(int i = 1; i <= word1.size(); i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}return word1.size() + word2.size() - 2 * dp[word1.size()][word2.size()];}
};

4.编辑距离

代码随想录 (programmercarl.com)

代码: 

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小操作数// 这道题和上一道的区别就是替换用到操作数其实是会变少的。// 添加和删除元素的所用的操作数都是一样的。for(int i = 0; i <= word1.size(); i++){dp[i][0] = i;}for(int j = 0; j <= word2.size(); j++){dp[0][j] = j;}for(int i = 1; i <= word1.size(); i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1];}else{dp[i][j] = min(dp[i][j - 1] + 1,min(dp[i - 1][j] + 1,dp[i - 1][j - 1] + 1));// 区别就在这里 dp[i - 1][j - 1] + 1就表示替换 上一题我们这里是加2,因为只能用删除}}}return dp[word1.size()][word2.size()];}
};

思路:

因为添加和删除,其实相对的操作次数是相同的。

这一道题和上一题唯一的区别就是 这里的替换表达式是dp[i - 1][j - 1] + 1 ;而上一题我们只能用删除,所以这里是dp[i - 1][j - 1] + 2。替换所用的操作数少了1.。

这篇关于代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058029

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字