代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离

本文主要是介绍代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.判断子序列

代码随想录

代码:

class Solution {
public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size() + 1,vector<int>(t.size() + 1,0));// 判断s和t的公共最长子序列的长度是否和s的长度相等// dp[i][j]表示下标为0~i-1的s的子数组和下标为0~j-1的子数组的最长公共子序列的长度for(int i = 1; i <= s.size(); i++){for(int j = 1; j <= t.size(); j++){if(s[i - 1] == t[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}if(dp[s.size()][t.size()] == s.size()){return true;}else{return false;}}
};

 思路:

        这题就是判断两个字符串的最长公共子序列是不是s。其实套路都一样。下面的都是copy昨天的。

        dp数组的含义:dp[i][j]表示下标为0~i-1和0~j-1字符串的最长公共子序列的长度。注意到了吗,只是求这两个字符串的最长公共子序列,没有要求一定要以什么东西结尾。所以最后一个元素就是dp数组中最大的那个元素。

        dp数组的初始化:dp[0][j]和dp[i][0]都没有实际意义,而且为了能够推出符合实际意义的dp[1][1]应该把这些元素初始化为0

        dp数组的递推公式:如果此时的i-1和j-1下标对应的元素都相等,那就可以在dp[i - 1][j - 1]的基础上加一了。如果不相等,就说明这两元素有互斥的关系,两个元素不可能同时被选到最长公共子序列中。所以我们可以分两种情况:dp[i - 1][j]或dp[i][j - 1],取两个的最大值。

        dp数组的遍历顺序:正序遍历。

2.不同的子序列

代码随想录 (programmercarl.com)

代码:

class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size() + 1,vector<uint64_t>(t.size() + 1,0));// dp[i][j]表示s中下标为0~i-1的字串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法// 根据定义进行初始化// dp[0][j]表示在空串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法// 很明显没有for(int i = 0; i <= s.size(); i++){// dp[i][0]表示s中下标为0~i-1的字串有多少种删除元素后可以变成空串的方法// 很明显是一种,就是删除所有元素 dp[0][0]也满足dp[i][0] = 1;}for(int i = 1; i <= s.size(); i++){for(int j = 1; j <= t.size(); j++){if(s[i - 1] == t[j - 1]){dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];// 注意这里dp数组的含义是方法数!!!// 一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。// 一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。}else{dp[i][j] = dp[i - 1][j];}}}return dp[s.size()][t.size()];}
};

 思路:

        dp数组的含义: dp[i][j]表示s中下标为0~i-1的字串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法

        dp数组的初始化:dp[0][j]表示在空串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法,很明显没有;dp[i][0]表示s中下标为0~i-1的字串有多少种删除元素后可以变成空串的方法很明显是一种,就是删除所有元素。(dp[0][0]也满足)

        dp数组的递推公式:注意这里dp数组的含义是方法数!!!
                    一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
                    一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

        dp数组的遍历顺序:正序遍历

uint64_t 是 C/C++ 语言中的整数数据类型,它表示无符号的 64 位整数。在标准头文件 <cstdint> 中定义,并且可用于确保在不同平台上具有相同大小的无符号 64 位整数。uint64_t 类型通常用于需要大范围整数值的情况,例如处理大量数据或需要确保数值不为负的情况。

3.两个字符串的删除操作

 代码随想录 (programmercarl.com)

代码: (正面思考。去模拟删除过程)

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小步数for(int i = 0; i <= word1.size(); i++){dp[i][0] = i;}for(int j = 0; j <= word2.size(); j++){dp[0][j] = j;}// 递推for(int i = 1; i <= word1.size();i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1]; // 新加的两个元素本来就相同,不需要做任何操作}else{dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i - 1][j - 1] + 2));// 新加进来的元素不同,要不删掉其中一个,要不两个都删了}}}return dp[word1.size()][word2.size()];}
};

思路: 

        dp数组的含义:dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小步数

        dp数组的递推公式:新加的两个元素本来就相同,不需要做任何操作 dp[i][j] = dp[i - 1][j - 1];新加的两个两个元素不同,要不删掉其中一个,要不两个都删了。dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i - 1][j - 1] + 2))

        dp数组的初始化:按照定义初始化就好了。

        dp数组的遍历顺序:正序遍历

代码:(反面来思考。用最少的操作剩下的子序列,不就是最长公共子序列吗?只要做一下减法就好了)

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j]表示dp[i][j]表示下标为0~i-1和0~j-1字符串的最长公共子序列的长度。for(int i = 1; i <= word1.size(); i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}return word1.size() + word2.size() - 2 * dp[word1.size()][word2.size()];}
};

4.编辑距离

代码随想录 (programmercarl.com)

代码: 

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小操作数// 这道题和上一道的区别就是替换用到操作数其实是会变少的。// 添加和删除元素的所用的操作数都是一样的。for(int i = 0; i <= word1.size(); i++){dp[i][0] = i;}for(int j = 0; j <= word2.size(); j++){dp[0][j] = j;}for(int i = 1; i <= word1.size(); i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1];}else{dp[i][j] = min(dp[i][j - 1] + 1,min(dp[i - 1][j] + 1,dp[i - 1][j - 1] + 1));// 区别就在这里 dp[i - 1][j - 1] + 1就表示替换 上一题我们这里是加2,因为只能用删除}}}return dp[word1.size()][word2.size()];}
};

思路:

因为添加和删除,其实相对的操作次数是相同的。

这一道题和上一题唯一的区别就是 这里的替换表达式是dp[i - 1][j - 1] + 1 ;而上一题我们只能用删除,所以这里是dp[i - 1][j - 1] + 2。替换所用的操作数少了1.。

这篇关于代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058029

相关文章

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

java Stream操作转换方法

《javaStream操作转换方法》文章总结了Java8中流(Stream)API的多种常用方法,包括创建流、过滤、遍历、分组、排序、去重、查找、匹配、转换、归约、打印日志、最大最小值、统计、连接、... 目录流创建1、list 转 map2、filter()过滤3、foreach遍历4、groupingB