代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离

本文主要是介绍代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.判断子序列

代码随想录

代码:

class Solution {
public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size() + 1,vector<int>(t.size() + 1,0));// 判断s和t的公共最长子序列的长度是否和s的长度相等// dp[i][j]表示下标为0~i-1的s的子数组和下标为0~j-1的子数组的最长公共子序列的长度for(int i = 1; i <= s.size(); i++){for(int j = 1; j <= t.size(); j++){if(s[i - 1] == t[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}if(dp[s.size()][t.size()] == s.size()){return true;}else{return false;}}
};

 思路:

        这题就是判断两个字符串的最长公共子序列是不是s。其实套路都一样。下面的都是copy昨天的。

        dp数组的含义:dp[i][j]表示下标为0~i-1和0~j-1字符串的最长公共子序列的长度。注意到了吗,只是求这两个字符串的最长公共子序列,没有要求一定要以什么东西结尾。所以最后一个元素就是dp数组中最大的那个元素。

        dp数组的初始化:dp[0][j]和dp[i][0]都没有实际意义,而且为了能够推出符合实际意义的dp[1][1]应该把这些元素初始化为0

        dp数组的递推公式:如果此时的i-1和j-1下标对应的元素都相等,那就可以在dp[i - 1][j - 1]的基础上加一了。如果不相等,就说明这两元素有互斥的关系,两个元素不可能同时被选到最长公共子序列中。所以我们可以分两种情况:dp[i - 1][j]或dp[i][j - 1],取两个的最大值。

        dp数组的遍历顺序:正序遍历。

2.不同的子序列

代码随想录 (programmercarl.com)

代码:

class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size() + 1,vector<uint64_t>(t.size() + 1,0));// dp[i][j]表示s中下标为0~i-1的字串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法// 根据定义进行初始化// dp[0][j]表示在空串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法// 很明显没有for(int i = 0; i <= s.size(); i++){// dp[i][0]表示s中下标为0~i-1的字串有多少种删除元素后可以变成空串的方法// 很明显是一种,就是删除所有元素 dp[0][0]也满足dp[i][0] = 1;}for(int i = 1; i <= s.size(); i++){for(int j = 1; j <= t.size(); j++){if(s[i - 1] == t[j - 1]){dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];// 注意这里dp数组的含义是方法数!!!// 一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。// 一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。}else{dp[i][j] = dp[i - 1][j];}}}return dp[s.size()][t.size()];}
};

 思路:

        dp数组的含义: dp[i][j]表示s中下标为0~i-1的字串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法

        dp数组的初始化:dp[0][j]表示在空串中有多少种删除元素后可以变成t中下标为0~j-1的子序列的方法,很明显没有;dp[i][0]表示s中下标为0~i-1的字串有多少种删除元素后可以变成空串的方法很明显是一种,就是删除所有元素。(dp[0][0]也满足)

        dp数组的递推公式:注意这里dp数组的含义是方法数!!!
                    一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
                    一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

        dp数组的遍历顺序:正序遍历

uint64_t 是 C/C++ 语言中的整数数据类型,它表示无符号的 64 位整数。在标准头文件 <cstdint> 中定义,并且可用于确保在不同平台上具有相同大小的无符号 64 位整数。uint64_t 类型通常用于需要大范围整数值的情况,例如处理大量数据或需要确保数值不为负的情况。

3.两个字符串的删除操作

 代码随想录 (programmercarl.com)

代码: (正面思考。去模拟删除过程)

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小步数for(int i = 0; i <= word1.size(); i++){dp[i][0] = i;}for(int j = 0; j <= word2.size(); j++){dp[0][j] = j;}// 递推for(int i = 1; i <= word1.size();i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1]; // 新加的两个元素本来就相同,不需要做任何操作}else{dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i - 1][j - 1] + 2));// 新加进来的元素不同,要不删掉其中一个,要不两个都删了}}}return dp[word1.size()][word2.size()];}
};

思路: 

        dp数组的含义:dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小步数

        dp数组的递推公式:新加的两个元素本来就相同,不需要做任何操作 dp[i][j] = dp[i - 1][j - 1];新加的两个两个元素不同,要不删掉其中一个,要不两个都删了。dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i - 1][j - 1] + 2))

        dp数组的初始化:按照定义初始化就好了。

        dp数组的遍历顺序:正序遍历

代码:(反面来思考。用最少的操作剩下的子序列,不就是最长公共子序列吗?只要做一下减法就好了)

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j]表示dp[i][j]表示下标为0~i-1和0~j-1字符串的最长公共子序列的长度。for(int i = 1; i <= word1.size(); i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}return word1.size() + word2.size() - 2 * dp[word1.size()][word2.size()];}
};

4.编辑距离

代码随想录 (programmercarl.com)

代码: 

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1,vector<int>(word2.size() + 1,0));// dp[i][j] dp[i][j]表示s中下标为0~i-1的字串 和 t中下标为0~j-1的子串 相同的最小操作数// 这道题和上一道的区别就是替换用到操作数其实是会变少的。// 添加和删除元素的所用的操作数都是一样的。for(int i = 0; i <= word1.size(); i++){dp[i][0] = i;}for(int j = 0; j <= word2.size(); j++){dp[0][j] = j;}for(int i = 1; i <= word1.size(); i++){for(int j = 1; j <= word2.size(); j++){if(word1[i - 1] == word2[j - 1]){dp[i][j] = dp[i - 1][j - 1];}else{dp[i][j] = min(dp[i][j - 1] + 1,min(dp[i - 1][j] + 1,dp[i - 1][j - 1] + 1));// 区别就在这里 dp[i - 1][j - 1] + 1就表示替换 上一题我们这里是加2,因为只能用删除}}}return dp[word1.size()][word2.size()];}
};

思路:

因为添加和删除,其实相对的操作次数是相同的。

这一道题和上一题唯一的区别就是 这里的替换表达式是dp[i - 1][j - 1] + 1 ;而上一题我们只能用删除,所以这里是dp[i - 1][j - 1] + 2。替换所用的操作数少了1.。

这篇关于代码随想录训练营Day 58|力扣392.判断子序列、115不同的子序列、583两个字符串的删除操作、72编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058029

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工