python数据分析-房价数据集聚类分析

2024-06-13 13:44

本文主要是介绍python数据分析-房价数据集聚类分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、研究背景和意义

随着房地产市场的快速发展,房价数据成为了人们关注的焦点。了解房价的分布特征、影响因素以及不同区域之间的差异对于购房者、房地产开发商、政府部门等都具有重要的意义。通过对房价数据的聚类分析,可以深入了解房价的内在结构和规律,为相关决策提供科学依据。

研究意义:

  1. 为购房者提供参考:通过聚类分析,可以将房价数据分为不同的类别,购房者可以根据自己的需求和预算选择适合的房源。
  2. 帮助房地产开发商制定营销策略:了解不同区域的房价特征和需求,可以帮助房地产开发商制定更有针对性的营销策略,提高销售效率。
  3. 为政府部门提供决策支持:政府部门可以通过房价数据的聚类分析,了解房地产市场的发展趋势和存在的问题,制定相应的政策措施,促进房地产市场的健康发展。
  4. 推动房地产市场的研究:房价数据的聚类分析是房地产市场研究的重要内容之一,通过对房价数据的深入分析,可以推动房地产市场的研究不断深入。

二、实证分析

首先导入数据集基本的包

数据和代码

import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt

然后读取数据集和展示

# 读取文件
file_path = 'df_cleaned2.csv'
data = pd.read_csv(file_path, encoding='utf-8')# 展示数据的前几行以了解结构
print(data.head())

随后查看数据类型

 

接下来查看缺失值的情况

# 查看缺失值情况
missing_values = data.isnull().sum()
missing_values

 

# 绘制缺失值情况的柱状图
# 绘制缺失值情况的柱状图
plt.bar(missing_values.index, missing_values.values, color=['black' if value == 0 else 'white' for value in missing_values.values])
plt.xlabel("变量")
plt.ylabel("缺失值数量")
plt.title("数据集缺失值情况")
plt.xticks(rotation=90)
plt.show()

从上面的结果和可视化可以发现该数据集没有缺失值,接下来进行统计学描述性分析

# 描述性分析
data.describe()

接下来进行特征可视化,首先进行房价直方图可视化

import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi']  #中文
plt.rcParams['axes.unicode_minus'] = False   #负号
# 可视化
# 绘制总价的直方图
plt.hist(data["总价"], bins=20,color='pink')
plt.xlabel("总价")
plt.ylabel("频数")
plt.title("总价分布直方图")
plt.show()

 

 

接下来进行区域分析 

# 区域分析
data["区域位置"] = data["区域位置"].astype("category")
data.boxplot(column="总价", by="区域位置",boxprops={'color':'blue'})
plt.xlabel("区域")
plt.ylabel("总价")
plt.title("不同区域的总价箱线图")
plt.show()

 

# 绘制不同户型的平均总价柱状图

data.groupby("户型结构")["总价"].mean().plot(kind="bar",color='orange')
plt.xlabel("户型")
plt.ylabel("平均总价")
plt.title("不同户型的平均总价柱状图")
plt.show()

接下来计算特征直接的相关系数

correlation_matrix = data.corr()
correlation_matrix

 

热力图:

plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("相关系数热力图")
plt.show()

接下来进行聚类分析,首先进行特征选择,选择特征:关注度、总价、卫生间数量、建筑面积,然后标准化特征

随后使用手肘方法和轮廓系数确定最佳 K 值

sse = {}
silhouette_scores = {}
for k in range(2, 11):  # 从 2 开始,因为轮廓系数至少需要 2 个簇kmeans = KMeans(n_clusters=k, random_state=42).fit(scaled_selected_features)sse[k] = kmeans.inertia_silhouette_scores[k] = silhouette_score(scaled_selected_features, kmeans.labels_)
# 绘制手肘图
plt.figure(figsize=(10, 6))
plt.subplot(2, 1, 1)
plt.plot(list(sse.keys()), list(sse.values()), marker='o')
plt.xlabel("Number of Clusters (K)")
plt.ylabel("SSE (Sum of Squared Errors)")
plt.title("Elbow Method for Determining Optimal K Value")
plt.grid(True)

接下来使用 PCA 进行降维以便于可视化

pca = PCA(n_components=2)  # 降至 2 维
pca_result = pca.fit_transform(scaled_selected_features)# 可视化聚类结果
plt.figure(figsize=(10, 6))
plt.scatter(pca_result[:, 0], pca_result[:, 1], c=labels, cmap='viridis', marker='o')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title(f'K-means Clustering with K={k} (PCA Reduced)')
plt.grid(True)
plt.show()

随后得出聚类中心

 

接下来根据聚类中心画出雷达图

# 标签,用于表示不同的聚类中心
labels = ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4']# 特征数
num_features = len(centers[0])
angles = np.linspace(0, 2 * np.pi, num_features, endpoint=False).tolist()# 将第一个特征点重复以闭合雷达图
centers = np.concatenate((centers, centers[:,[0]]), axis=1)
angles += angles[:1]fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
ax.set_theta_offset(np.pi / 2)
ax.set_theta_direction(-1)# 绘制雷达图
for i in range(len(centers)):ax.plot(angles, centers[i], linewidth=2, label=labels[i])ax.fill(angles, centers[i], alpha=0.25)# 添加标题和图例
plt.title('Radar Chart of Clusters')
plt.legend(loc='upper right', bbox_to_anchor=(1.1, 1.1))plt.show()

接下来可视化主成分

# 可视化主成分 1 的载荷
plt.figure(figsize=(8, 4))
colors = ['red', 'green', 'blue', 'yellow', 'purple', 'orange', 'pink', 'brown', 'gray', 'cyan']
plt.bar(pca_loadings_df.columns, pca_loadings_df.loc['PC1'], color=colors)
plt.xlabel('Features')
plt.ylabel('Loadings for PC1')
plt.title('PCA Loadings for Principal Component 1')
plt.show()# 可视化主成分 2 的载荷
plt.figure(figsize=(8, 4))
plt.bar(pca_loadings_df.columns, pca_loadings_df.loc['PC2'], color=colors)
plt.xlabel('Features')
plt.ylabel('Loadings for PC2')
plt.title('PCA Loadings for Principal Component 2')
plt.show()

 

 三、小结

本研究通过对房价数据的聚类分析,将房价数据分为了不同的类别,发现了房价的分布特征和规律。通过特征选择和标准化处理,提高了聚类分析的准确性和可靠性。使用手肘方法和轮廓系数确定了最佳的 K 值,为聚类分析提供了科学依据。通过 PCA 进行降维,可视化了主成分,进一步深入了解了房价数据的内在结构。本研究的结果对于购房者、房地产开发商、政府部门等都具有重要的参考价值,可以为相关决策提供科学依据。

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

这篇关于python数据分析-房价数据集聚类分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057468

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.