python数据分析-房价数据集聚类分析

2024-06-13 13:44

本文主要是介绍python数据分析-房价数据集聚类分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、研究背景和意义

随着房地产市场的快速发展,房价数据成为了人们关注的焦点。了解房价的分布特征、影响因素以及不同区域之间的差异对于购房者、房地产开发商、政府部门等都具有重要的意义。通过对房价数据的聚类分析,可以深入了解房价的内在结构和规律,为相关决策提供科学依据。

研究意义:

  1. 为购房者提供参考:通过聚类分析,可以将房价数据分为不同的类别,购房者可以根据自己的需求和预算选择适合的房源。
  2. 帮助房地产开发商制定营销策略:了解不同区域的房价特征和需求,可以帮助房地产开发商制定更有针对性的营销策略,提高销售效率。
  3. 为政府部门提供决策支持:政府部门可以通过房价数据的聚类分析,了解房地产市场的发展趋势和存在的问题,制定相应的政策措施,促进房地产市场的健康发展。
  4. 推动房地产市场的研究:房价数据的聚类分析是房地产市场研究的重要内容之一,通过对房价数据的深入分析,可以推动房地产市场的研究不断深入。

二、实证分析

首先导入数据集基本的包

数据和代码

import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt

然后读取数据集和展示

# 读取文件
file_path = 'df_cleaned2.csv'
data = pd.read_csv(file_path, encoding='utf-8')# 展示数据的前几行以了解结构
print(data.head())

随后查看数据类型

 

接下来查看缺失值的情况

# 查看缺失值情况
missing_values = data.isnull().sum()
missing_values

 

# 绘制缺失值情况的柱状图
# 绘制缺失值情况的柱状图
plt.bar(missing_values.index, missing_values.values, color=['black' if value == 0 else 'white' for value in missing_values.values])
plt.xlabel("变量")
plt.ylabel("缺失值数量")
plt.title("数据集缺失值情况")
plt.xticks(rotation=90)
plt.show()

从上面的结果和可视化可以发现该数据集没有缺失值,接下来进行统计学描述性分析

# 描述性分析
data.describe()

接下来进行特征可视化,首先进行房价直方图可视化

import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['KaiTi']  #中文
plt.rcParams['axes.unicode_minus'] = False   #负号
# 可视化
# 绘制总价的直方图
plt.hist(data["总价"], bins=20,color='pink')
plt.xlabel("总价")
plt.ylabel("频数")
plt.title("总价分布直方图")
plt.show()

 

 

接下来进行区域分析 

# 区域分析
data["区域位置"] = data["区域位置"].astype("category")
data.boxplot(column="总价", by="区域位置",boxprops={'color':'blue'})
plt.xlabel("区域")
plt.ylabel("总价")
plt.title("不同区域的总价箱线图")
plt.show()

 

# 绘制不同户型的平均总价柱状图

data.groupby("户型结构")["总价"].mean().plot(kind="bar",color='orange')
plt.xlabel("户型")
plt.ylabel("平均总价")
plt.title("不同户型的平均总价柱状图")
plt.show()

接下来计算特征直接的相关系数

correlation_matrix = data.corr()
correlation_matrix

 

热力图:

plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm")
plt.title("相关系数热力图")
plt.show()

接下来进行聚类分析,首先进行特征选择,选择特征:关注度、总价、卫生间数量、建筑面积,然后标准化特征

随后使用手肘方法和轮廓系数确定最佳 K 值

sse = {}
silhouette_scores = {}
for k in range(2, 11):  # 从 2 开始,因为轮廓系数至少需要 2 个簇kmeans = KMeans(n_clusters=k, random_state=42).fit(scaled_selected_features)sse[k] = kmeans.inertia_silhouette_scores[k] = silhouette_score(scaled_selected_features, kmeans.labels_)
# 绘制手肘图
plt.figure(figsize=(10, 6))
plt.subplot(2, 1, 1)
plt.plot(list(sse.keys()), list(sse.values()), marker='o')
plt.xlabel("Number of Clusters (K)")
plt.ylabel("SSE (Sum of Squared Errors)")
plt.title("Elbow Method for Determining Optimal K Value")
plt.grid(True)

接下来使用 PCA 进行降维以便于可视化

pca = PCA(n_components=2)  # 降至 2 维
pca_result = pca.fit_transform(scaled_selected_features)# 可视化聚类结果
plt.figure(figsize=(10, 6))
plt.scatter(pca_result[:, 0], pca_result[:, 1], c=labels, cmap='viridis', marker='o')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title(f'K-means Clustering with K={k} (PCA Reduced)')
plt.grid(True)
plt.show()

随后得出聚类中心

 

接下来根据聚类中心画出雷达图

# 标签,用于表示不同的聚类中心
labels = ['Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4']# 特征数
num_features = len(centers[0])
angles = np.linspace(0, 2 * np.pi, num_features, endpoint=False).tolist()# 将第一个特征点重复以闭合雷达图
centers = np.concatenate((centers, centers[:,[0]]), axis=1)
angles += angles[:1]fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
ax.set_theta_offset(np.pi / 2)
ax.set_theta_direction(-1)# 绘制雷达图
for i in range(len(centers)):ax.plot(angles, centers[i], linewidth=2, label=labels[i])ax.fill(angles, centers[i], alpha=0.25)# 添加标题和图例
plt.title('Radar Chart of Clusters')
plt.legend(loc='upper right', bbox_to_anchor=(1.1, 1.1))plt.show()

接下来可视化主成分

# 可视化主成分 1 的载荷
plt.figure(figsize=(8, 4))
colors = ['red', 'green', 'blue', 'yellow', 'purple', 'orange', 'pink', 'brown', 'gray', 'cyan']
plt.bar(pca_loadings_df.columns, pca_loadings_df.loc['PC1'], color=colors)
plt.xlabel('Features')
plt.ylabel('Loadings for PC1')
plt.title('PCA Loadings for Principal Component 1')
plt.show()# 可视化主成分 2 的载荷
plt.figure(figsize=(8, 4))
plt.bar(pca_loadings_df.columns, pca_loadings_df.loc['PC2'], color=colors)
plt.xlabel('Features')
plt.ylabel('Loadings for PC2')
plt.title('PCA Loadings for Principal Component 2')
plt.show()

 

 三、小结

本研究通过对房价数据的聚类分析,将房价数据分为了不同的类别,发现了房价的分布特征和规律。通过特征选择和标准化处理,提高了聚类分析的准确性和可靠性。使用手肘方法和轮廓系数确定了最佳的 K 值,为聚类分析提供了科学依据。通过 PCA 进行降维,可视化了主成分,进一步深入了解了房价数据的内在结构。本研究的结果对于购房者、房地产开发商、政府部门等都具有重要的参考价值,可以为相关决策提供科学依据。

创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

这篇关于python数据分析-房价数据集聚类分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057468

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操