深度学习小目标检测问题——(转载)谈一谈深度学习之semantic Segmentation

本文主要是介绍深度学习小目标检测问题——(转载)谈一谈深度学习之semantic Segmentation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://www.cnblogs.com/daihengchen/p/6345041.html

上一次发博客已经是9月份的事了…这段时间公司的事实在是多,有写博客的时间都拿去看paper了…正好春节回来写点东西,也正好对这段时间做一个总结。

首先当然还是好好说点这段时间的主要工作:语义分割。semantic segmentation 应该是DL这几年快速发展的最重要的领域之一了,但可惜的事,在这方面大家走的并不是很远,还是有很多值得改进的地方,这当然是个很好的事情,特别是我这种想发paper弱渣…

语义分割做的是什么事呢? 就是给你一张图,你要对其中的每个pixel做分类,例如把所有的人都涂成红色,车都涂成蓝色。这是在机器人领域和自动驾驶中都非常重要的一步,因为我们开始让电脑真正的开始认识这个世界了。如下图所示:
在这里插入图片描述
在这里插入图片描述
semantic segmentation的转折点是从long的那那篇FCN开始的,之前的方法大多是用PGM建模的方法来做,原理都很清楚,但效果就是不好,因为难以解决的问题太多了。等DL大火之后,果然还是DL大法好,FCN这篇文章我之前是写过笔记的,那时候还比较年轻,现在再好好说一下。

这篇文章提出来的全卷积的概念并不新鲜, 也无怪乎lecun再FCN获得CVPR的best paper后吐槽了一发,但个人觉得现在DL领域,关键的不是谁提出了什么,而是谁做出了什么,谁做的更好,毕竟效果好才是王道。回到FCN,他的思路很简单,VGG最后的全联接层使得我们的输入只能是固定的,这个很不好,所以就用全卷积层来代替它,这样就可以任意输入了,全卷积层这里有个很多人都有的概念的疑惑,那就是为什么会有人说11的卷积就等价于全连接层呢?(而且还是lecun说的…)这事我也纠结过,我们很简单的理解,和全连接层等价的肯定是kernel和feature map一样大的卷积层,但lecun这么说是有语境的…因为在做全连接层之前,我们要把图像拉成一列,如114096这种,这样对他做11的卷积就等价于全连接层了…也算是我一个无聊的发现…

说说FCN的创新点和问题,最大的创新点就是skip connection了,这个trick到现在都是很不错的想法,不同level的feature map所提供的信息是不同的,所以在最后分类的时候都可以用到他们,semantic segmentation一直有一个trade-off,就是物体的边缘和物体整体的分类的正确性,high-level的feature能提供更细节的表现,low-level的feature侧重于于很大一块区域的准确性,传统解决这个问题的方法一般是两种:1.multi-scale的input。2.skip connection。   这方面最近有个叫refinenet的paper做的挺不错的,它用restnet的思想将网络分为两条路,一个负责location,一个负责refine,有兴趣可以去看看。 回到FCN的问题,也是我最想吐槽的一点…VGG的model时downsample 32倍的,所以FCN使用了原来classification一样的模型,所以在经过最后77点卷积之后,feature map就只有11点大小了…也就是说我们要从1*1点feature map上恢复到原图,虽然说它到channel很多,但毫无疑问,它提供的信息时严重不足的,这也无怪乎他得用skip connection了…这里要谈一谈downsample的问题,downsample太多的话会丢失原图的很多信息,毕竟我们是做pixel级别的分类,所以根据我的经验,一般是8倍或者16倍左右…

现在做semantatic segmentation 主要还是用的deeplab那一套,接下来我准备好好讲一下deeplab这一套方法…

deeplab那篇paper很推荐大家去看一下,他应该基本代表了现在semantic segmentation的state of art的流程了,我分几点说一下吧:

一、encoder层:

encoder层我的理解是把原图downsample的步骤,一般来说这一步使用的网络是和分类使用的一致的,分类的网络性能越强,最后大效果也就越好,所以现在普遍使用的是resnet(152),这里需要注意的问题就是,传统的classification下采样的倍数太大了,不利于分割,但是我们又不能不用pretrain-model,因为用了imagenet或者COCO的pretrain model,结果一定会涨。。而且收敛会快很多。这里通用的解决方法是用hole算法,其实说白了,就是使用dilated convlution,在卷积的时候,不是对一块连续的区域卷积,而是跳跃式的,如下图所示:  
 在这里插入图片描述
这样做的话有两个好处:

1.pretrain model可以用了,在需要downsample的地方,把所有的卷积变为一个dilation 2的卷积。

2.可以任意的提高感受野了,只要增加dilation即可,当然,有机会可以说一下,理论上的感受野不代表实际的感受野,因为会有很多的重合,所以理论感受野的中间会对最后的结果影响很大,而边缘地方影响很小,最近有篇paper也提到了这点,有时间放上链接吧。。。PS:因此在未来recepitive filed的研究上,我觉得好好解决这个问题是一个不错的思路。

二、decoder层:

和encoder层对应的自然就是decoder层,这个也很好理解,我们要对pixel做分类,自然就要把图像upsample到原图的大小(或者一半,然后再做biliner upsample),upsample的方法有几类,根据我的经验…都差不了多少,卷积+biliear或者卷积+反卷积或者卷积+unpooling,最后一个在deconvlution那篇paper出现的方法一度让我以为是通用的方法,直到发现大家开始抛弃pooling的downsample方法以后…不用pooling下采样很好理解,毕竟我们是做pixel级别的分类,所以还是用可学习的下采样,上采样的比较好。

另外,decoder层需要注意的事,实际上它并不需要和encoder层一样大,deconvlution那篇paper提出的对称结构确实优雅而且看起来就有理有据,但实际上并不是需要这么做的,enet的那篇paper对此做过说明,简单的理解就是:decoder实际上就是对feature map做一个upsample的refine,这个时候网络已经学习到了需要的东西了,毕竟我们并不是要去做一个autoencoder。。。

三、post-processing 后处理

后处理这个东西,其实有点小尴尬,作为刷榜的不二神器,他有两个问题:1.不符合现在很多人对end-to-end的迷之追求。2.太慢了,正常使用的dense crf会比神经网络慢很多,最后的实用场景基本不可能使用。

dense crf的调参也是我不能承受之痛…直到用了同事grid search的暴力调参大法,才结束我那段黑暗的日子…

不扯了,简单的说一下常见的后处理方法-CRF吧,crf作为经典的一个图模型,本来是semantic segmentation的主要方法,直到DL出现…最终沦为了后处理…DL+CRF有着天然的方便,为什么这么说了,CRF的优化是要有一个初始化的state的,也就是每个pixel的unary energy,如果只有label的方法等话,一般也就是用概率和置信度来暴力指定了,但其实神经网络的最后一层一般是softmax,所以我们完全可以用softmax的输出作为CRF中unary enargy的初始化,至于pair energy,还是常规的RGB像素值和XY location值了。

实际上,对于CRF大家是又爱又恨的,所以后面也出现了不少的改进方法,如CRF as RNN,CNN+LSTM这些,实际效果我没试过,但估计是呵呵了,比较期待的是北大的segmodel,看他们在cityscapes上的表现,感觉CVPR2017会有一个惊喜…

总结:

日常总结,segmentation是一个很不错的领域,但个人感觉大家主要还是在拼trick和调参技巧,这真是最没意思的行为了。但也很好,给了我们不少想象的空间,我最近的工作就是receptive filed 、side information上做点文章…希望可以出点东西吧。加油~

这篇关于深度学习小目标检测问题——(转载)谈一谈深度学习之semantic Segmentation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057072

相关文章

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

解决JavaWeb-file.isDirectory()遇到的坑问题

《解决JavaWeb-file.isDirectory()遇到的坑问题》JavaWeb开发中,使用`file.isDirectory()`判断路径是否为文件夹时,需要特别注意:该方法只能判断已存在的文... 目录Jahttp://www.chinasem.cnvaWeb-file.isDirectory()遇

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依