ADABOOST做人脸检测程序与原理

2024-06-13 10:08

本文主要是介绍ADABOOST做人脸检测程序与原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ADABOOST做人脸识别原理+程序详解

**注意:**adaboost算法的目的是做一个目标检测,举个例子在人脸识别中,adaboost只能检测出一张图片中的人脸,并不能区分这些人脸分别是谁。


*1. 算法的整体流程*
人脸检测(face detection)是指对于任意一幅给定的图像,采用一定的策略对其进行搜索以确定其中是否有人脸,如果有人脸则返回人脸的位置、大小和姿态。

这是matlab中训练一个级联分类的过程,整个流程和adaboost的流程很像。
算法的整体流程如下图所示:

*2. 算法详解*
基于adaboost的人脸检测算法来说,训练分类器的部分,主要分成以下四步:
1. step1 样本初始化
给定一系列的训练样本(x1,y1), (x2,y2), ···,(xn,yn) 其中, yi=1表示样本为人脸,yi=0表示样本为非人脸。设人脸正样本的数量为n1,非人脸负样本的数量为n2

2. step2 权重初始化
**目的:**adaboost采用多个弱分类组成的强分类器,这里的权重初始化,是对所有的样本进行的初始化,当第i个弱分类器对第j个样本分类错误时,则增大第j个样本在后续分类器中的权重。通俗的讲,就像我们在学习的时候要准备一个错题本,注意前面的错题一样。
对所有样本的权重初始化为:

3. step3 最佳弱分类器选择
设共需从原有的N个弱分类器中选择T个弱分类器,用t来进行当前弱分类器的计数,则t=1,2,···,T;用以下步骤训练第t轮的最佳弱分类器:
>
- 权重归一化:

  • 弱分类器训练:
    对于每个特征E(就是应用各种不同尺度的Harr特征),训练一个对应的弱分类器h(x,E,p,theta),该分类器对所有样本进行分类时对应于各样本的加权错误率为:

  • 最佳弱分类器选取:
    上一步计算的是一个特征对所有样本的分类错误率,这里就计算所有的特征(选用20x20的人脸图像是,共有78460个特征)
    伪代码:
    for t = 1:T
    for j = 1:num_of_feature
    计算每个feature对n个样本的加权错误率,选取加权错误率最小的feature作为t个弱分类器;
    最小错误率为:

  • 权重更新:
    目的:为了提高前面错误分类样本的权重
    计算更新因子:


    权重更新:

    其中:
    当样本xi被正确分类时, = 0;
    当样本xi被错误分类时, = 1。

4. step4 合成强分类器
经过T轮训练之后,获得了T个最佳弱分类器,其中,每个弱分类器有对应的特征、阈值和方向指示符,最后,通过对T个弱分类器进行线性加权合成强分类器:

其中:

而其中的theta为通过率阈值,一般取为0.5*at。

参考:

  1. http://private.codecogs.com/latex/eqneditor.php
  2. https://blog.csdn.net/watkinsong/article/details/7631241

这篇关于ADABOOST做人脸检测程序与原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056997

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

C#控制台程序同步调用WebApi实现方式

《C#控制台程序同步调用WebApi实现方式》控制台程序作为Job时,需同步调用WebApi以确保获取返回结果后执行后续操作,否则会引发TaskCanceledException异常,同步处理可避免异... 目录同步调用WebApi方法Cls001类里面的写法总结控制台程序一般当作Job使用,有时候需要控制