【CTC】CTC1D原理/代码/资料+2D CTC LOSS

2024-06-13 08:58

本文主要是介绍【CTC】CTC1D原理/代码/资料+2D CTC LOSS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 1D CTC

1.1 简介

就不写了

1.2 核心思想

和大多数有监督学习一样,CTC 使用最大似然标准进行训练。

给定输入 x,输出 l 的条件概率为:
p(l|x)=∑π∈−1(l)p(π|x)

其中,B-1(l)表示了长度为 T 且示经过 B 结果为 l 字符串的集合。

CTC 假设每一步输出的概率是(相对于输入)条件独立的,因此有:
p ( π ∣ x ) = ∏ y π t t , ∀ π ∈ L ′ T p(\pi|x) = \prod y^t_{\pi_t}, \forall \pi \in L^{\prime T} p(πx)=yπtt,πLT

然而,直接按上式我们没有办理有效的计算似然值。下面用动态规划解决似然的计算及梯度计算, 涉及前向算法和后向算法。

1.3 图解原理

转载自[5]
如下图,为了更形象表示问题的搜索空间,用X轴表示时间序列, Y轴表示输出序列,并把输出序列做标准化处理,输出序列中间和头尾都加上blank,用l表示最终标签,l’表示扩展后的形式,则由2|l| + 1 = 2|l’|,比如:l=apple => l’=a_p_p_l_e
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图中并不是所有的路径都是合法路径,所有的合法路径需要遵循一些约束,如下图:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
所以,依据以上约束规则,遍历所有映射为“apple”的合法路径,最终时序T=8,标签labeling=“apple”的全部路径如下图:
在这里插入图片描述

接下来,如何计算这些路径的概率总和?暴力遍历?分而治之?作者借鉴HMM的Forward-Backward算法思路,利用动态规划算法求解,可以将路径集合分为前向和后向两部分,如下图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过动态规划求解出前向概率之后,可以用前向概率来计算CTC Loss函数,如下图:
在这里插入图片描述

说明:可将上面的α(t)理解成一个转移矩阵,走过的路径即为label,矩阵的值表示概率

根据 α 的定义,有如下递归关系:
α t ( s ) = { ( α t − 1 ( s ) + α t − 1 ( s − 1 ) ) y l s ′ t , i f l s ′ = b o r l s − 2 ′ = l s ′ ( α t − 1 ( s ) + α t − 1 ( s − 1 ) + α t − 1 ( s − 2 ) ) y l s ′ t o t h e r w i s e \alpha_t(s) = \{ \begin{array}{l} (\alpha_{t-1}(s)+\alpha_{t-1}(s-1)) y^t_{l^\prime_s},\ \ \ if\ l^\prime_s = b \ or\ l_{s-2}^\prime = l_s^{\prime} \\ (\alpha_{t-1}(s)+\alpha_{t-1}(s-1) + \alpha_{t-1}(s-2)) y^t_{l^\prime_s} \ \ otherwise \end{array} αt(s)={(αt1(s)+αt1(s1))ylst,   if ls=b or ls2=ls(αt1(s)+αt1(s1)+αt1(s2))ylst  otherwise

case 2

递归公式中 case 2 是一般的情形。如图所示,t 时刻字符为 s 为 blank 时,它可能由于两种情况扩展而来:1)重复上一字符,即上个字符也是 a,2)字符发生转换,即上个字符是非 a 的字符。第二种情况又分为两种情形,2.1)上一字符是 blank;2.2)a 由非 blank 字符直接跳转而来() 操作中, blank 最终会被去掉,因此 blank 并不是必须的)。
在这里插入图片描述

case 1

递归公式 case 1 是特殊的情形。
如图所示,t 时刻字符为 s 为 blank 时,它只能由于两种情况扩展而来:1)重复上一字符,即上个字符也是 blank,2)字符发生转换,即上个字符是非 blank 字符。t 时刻字符为 s 为非 blank 时,类似于 case 2,但是这时两个相同字符之间的 blank 不能省略(否则无法区分”aa”和”a”),因此,也只有两种跳转情况。
在这里插入图片描述

1.4 demo code

必须理解。有相应的注释。主要思路就是:

  • 先求当前步的所有可能转移概率的和
  • 转移概率和×label的预测概率
import numpy as npnp.random.seed(1111)T, V = 12, 5
m, n = 6, Vx = np.random.random([T, m])  # T x m
w = np.random.random([m, n])  # weights, m x ndef softmax(logits):max_value = np.max(logits, axis=1, keepdims=True)exp = np.exp(logits - max_value)exp_sum = np.sum(exp, axis=1, keepdims=True)dist = exp / exp_sumreturn distdef toy_nw(x):y = np.matmul(x, w)  # T x n y = softmax(y)return yy = toy_nw(x)
print(y)
print(y.sum(1, keepdims=True))def forward(y, labels):T, V = y.shapeL = len(labels)             # 步长alpha = np.zeros([T, L])    # init初始化第一步的概率alpha[0, 0] = y[0, labels[0]]   # 第一步的标签为blank时,pred的概率   // alpha是转移概率?alpha[0, 1] = y[0, labels[1]]   # 第一步的标签为第一个字符时,pred的概率for t in range(1, T):       # step,第n步的标签为s时for i in range(L):      # 标签长度s = labels[i]a = alpha[t - 1, i] if i - 1 >= 0:                      # case1,有两种方式可以转移到当前位置a += alpha[t - 1, i - 1]if i - 2 >= 0 and s != 0 and s != labels[i - 2]:        # case 2,有三种方式可以转移到当前位置,转移概率×lable概率a += alpha[t - 1, i - 2]alpha[t, i] = a * y[t, s]return alphalabels = [0, 3, 0, 3, 0, 4, 0]  # 0 for blank
alpha = forward(y, labels)
print(alpha)p = alpha[-1, -1] + alpha[-1, -2]
print(p)

1.5 pytorch code

详细请看:ctc_loss.py

从上面可以知道,涉及到大量的概率值计算,这些概率值往往是很小的浮点数。而且概率值相乘后会越变越小,计算起来会损失精度,为了保持准确度,统一将这些概率值进行log处理,再参与运算。也就是说,在代码中处理的概率是对数域的值。所以网络输出的pred,会先进行torch.log操作。具体的计算请参考[2]

1.6 1D ctc 的局限性

在这里插入图片描述

  • 1d ctc在高度方向上必须压缩成一维,这样在处理弯曲文本的时候,会存在字符在宽度方向分割不好的情况。于是有了后续的2D CTC LOSS

2 2D CTC LOSS

  • 论文

  • 2d比1d多了个高度,还是采用转移矩阵的方式来理解。相对于1d,2d多了一个h方向,转移矩阵相当于一个三维矩阵。

下图其实不够具体,没有清晰的解释转移矩阵的效果
在这里插入图片描述

2.2 网络结构图

在这里插入图片描述

  • 网络有两个输出分支,1为batchch*w形状的在c维度的softmax表示每个位置,预测字符的概率。2为batch×1×h×w形状在h维度的softmax,表示在h方向选择的概率
  • 而h方向上下跳我们可以利用一个网络进行学习,上面第一个输出是wh各个位置的概率输出向量,而下面第二个输出是各个位置在h方向上跳动的概率,由于最后一列不用跳,因此输出是(w-1) h * h

每个位置在h方向跳动的概率和为1
在这里插入图片描述

  • 同样在计算2-D CTC loss时依然可以用到动态规划,只是在多了个h方向(将原来的某一个点(一个概率值),换成某一条竖线,变成h个概率值乘以跳转概率的和)
    在这里插入图片描述

2.3 局限性

  • 2D ctc loss还是采用序列(从左到右)的动态规划,所以其相对于1d ctc只是增加了一个h方向。能做弯曲文本的识别,但是还是单行。无法进行多行文本的识别。例如下图:
    在这里插入图片描述
    在这里插入图片描述

Reference

  1. 高大上的动图
  2. 对数域的计算log_add
  3. 【Learning Notes】CTC 原理及实现
  4. 2-D CTC Loss
  5. CTC Algorithm Explained Part 1:Training the Network(CTC算法详解之训练篇)

这篇关于【CTC】CTC1D原理/代码/资料+2D CTC LOSS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056847

相关文章

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例