2D-CTC for Scene Text Recognition,1-D CTC Loss参考CTC Loss和Focal CTC Loss Motivation 普通的CTC仅支持1-d,但是文字识别不像语音识别,很多时候文字不是水平的,如果强行“压”到1d,对识别影响很大,如下图所示 Review 1-D CTC 首先对alphabeta进行扩充,加入blank符号,然后定义
1、CTC ( Connectionist Temporal Classification) 网络结构 参考地址: CTC白话参考地址 其中CTC-loss 部分使用到了动态规划的思想。 大目标是: m i n ∑ B ( π ) = z ∏ t = 1 T y π t t m i n ∑ B ( π ) = z ∑ t = 1 T l o g ( y π t t ) min \su
https://github.com/SeanNaren/warp-ctc 下载下来,传到服务器上 解压 更名 cd warp-ctcmkdir build; cd buildcmake ..make 上面这些过程缺啥装啥,失败了,把缺的东西装上,重复下面这个过程,直到成功 cd build make clean cmake .. make 下一步开始安装 cd p
1 1D CTC 1.1 简介 就不写了 1.2 核心思想 和大多数有监督学习一样,CTC 使用最大似然标准进行训练。 给定输入 x,输出 l 的条件概率为: 其中,B-1(l)表示了长度为 T 且示经过 B 结果为 l 字符串的集合。 CTC 假设每一步输出的概率是(相对于输入)条件独立的,因此有: p ( π ∣ x ) = ∏ y π t t , ∀ π ∈ L ′ T p
文字识别 Optical Character Recognition,OCR 自然场景文本检测识别技术综述 将图片上的文字内容,智能识别成为可编辑的文本。 场景文字识别(Scene Text Recognition,STR) OCR(Optical Character Recognition, 光学字符识别)传统上指对输入扫描文档图像进行分析处理,识别出图像中文字信息。场景文字识别(
1.CTC Loss Error: invalidArgumentError: Not Enough time for target transition sequence. —— 标签的长度大于sequence length,比如ocr识别中原始图像经过卷积倍,池化后time step 维度减小,小于标签的长度。例如,输入矩阵长度为4,你得标签文本为‘world’长度为5,矩阵最多只能包含4个
文章目录 1、CTC Loss 出现的背景例1:用于图像文本识别的CRNN网络例2:语音识别 2、CTC Loss 的总体思想3、Forward-Backward 算法3.1 合法路径的约束条件3.2 Forward-Backward 算法的数学推导 4、CTC 的训练(目标函数求导)5、解码算法6、CTC Loss 的优缺点 CTC Loss 是一种不需要数据对齐的,广泛用于图