深度学习每周学习总结N1(one-hot 编码案例)

2024-06-13 08:28

本文主要是介绍深度学习每周学习总结N1(one-hot 编码案例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

数据链接
提取码:c949

–来自百度网盘超级会员V5的分享

目录

    • 总结:
    • 1. 中文文本One-Hot编码示例
      • 代码解析
    • 2.直接使用词袋模型(CountVectorizer)实现独热编码

总结:

之前有学习过文本预处理的环节,对文本处理的主要方式有以下三种:

1:词袋模型(one-hot编码)

2:TF-IDF

3:Word2Vec(词向量)

详细介绍及中英文分词详见pytorch文本分类(一):文本预处理

本期主要介绍one-hot编码示例流程(词汇表 -> 文本序列 -> One-hot编码)手撕模式 + 直接调用现成的词袋模型(CountVectorizer)

1. 中文文本One-Hot编码示例

import torch
import torch.nn.functional as F
import jieba# 示例中文文本
texts = ['你好,最近怎么样?','我过的很好,谢谢!','再见。']# 使用结巴分词进行分词
tokenized_texts = [list(jieba.cut(text)) for text in texts] # [['你好', ',', '最近', '怎么样', '?'], ['我', '过', '的', '很好', ',', '谢谢', '!'], ['再见', '。']]# 构建词汇表
word_index = {}
index_word = {}
# 将所有分词结果中的单词去重,建立 word_index 和 index_word 两个字典,分别存储单词到索引和索引到单词的映射
for i,word in enumerate(set(word for text in tokenized_texts for word in text)):word_index[word] = iindex_word[i] = word# 将文本转化为整数序列
sequences = [[word_index[word] for word in text] for text in tokenized_texts] # 获取词汇表大小
vocab_size = len(word_index)# 将整数序列转化为ont-hot编码
one_hot_results = torch.zeros(len(texts),vocab_size)
for i,seq in enumerate(sequences):one_hot_results[i,seq] = 1# 打印结果
print("词汇表: \n",word_index)
print("文本: \n",texts)
print("分词结果: \n",tokenized_texts)
print("文本序列: \n",sequences)
print("One-Hot编码: \n",one_hot_results)
词汇表: {'。': 0, '的': 1, '谢谢': 2, '你好': 3, '再见': 4, '我过': 5, '!': 6, '很': 7, '?': 8, '好': 9, '怎么样': 10, '最近': 11, ',': 12}
文本: ['你好,最近怎么样?', '我过的很好,谢谢!', '再见。']
分词结果: [['你好', ',', '最近', '怎么样', '?'], ['我过', '的', '很', '好', ',', '谢谢', '!'], ['再见', '。']]
文本序列: [[3, 12, 11, 10, 8], [5, 1, 7, 9, 12, 2, 6], [4, 0]]
One-Hot编码: tensor([[0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1.],[0., 1., 1., 0., 0., 1., 1., 1., 0., 1., 0., 0., 1.],[1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]])

让我们逐步解析这段代码,并说明每一步操作后数据的结构和状态。

代码解析

  1. 导入必要的库

    import torch
    import torch.nn.functional as F
    import jieba
    
  2. 示例中文文本

    texts = ['你好,最近怎么样?', '我过的很好,谢谢!', '再见。']
    

    texts 是一个包含三条中文文本的列表。

  3. 使用结巴分词进行分词

    tokenized_texts = [list(jieba.cut(text)) for text in texts]
    

    操作:对每条文本进行分词,结果存储在 tokenized_texts 列表中。

    结果

    tokenized_texts = [['你好', ',', '最近', '怎么样', '?'], ['我', '过', '的', '很好', ',', '谢谢', '!'], ['再见', '。']]
    
  4. 构建词汇表

    word_index = {}
    index_word = {}
    for i, word in enumerate(set(word for text in tokenized_texts for word in text)):word_index[word] = iindex_word[i] = word
    

    操作:将所有分词结果中的单词去重,建立 word_indexindex_word 两个字典,分别存储单词到索引和索引到单词的映射。

    结果

    word_index = {'最近': 0, '谢谢': 1, '?': 2, '的': 3, ',': 4, '怎么样': 5, '很好': 6, '我': 7, '再见': 8, '你好': 9, '过': 10, '。': 11, '!': 12}
    index_word = {0: '最近', 1: '谢谢', 2: '?', 3: '的', 4: ',', 5: '怎么样', 6: '很好', 7: '我', 8: '再见', 9: '你好', 10: '过', 11: '。', 12: '!'}
    
  5. 将文本转化为整数序列

    sequences = [[word_index[word] for word in text] for text in tokenized_texts]
    

    操作:将每条分词后的文本转化为对应的整数序列。

    结果

    sequences = [[9, 4, 0, 5, 2], [7, 10, 3, 6, 4, 1, 12], [8, 11]]
    
  6. 获取词汇表大小

    vocab_size = len(word_index)
    

    操作:计算词汇表的大小。

    结果

    vocab_size = 13
    
  7. 将整数序列转化为one-hot编码

    one_hot_results = torch.zeros(len(texts), vocab_size)
    for i, seq in enumerate(sequences):one_hot_results[i, seq] = 1
    

    操作:初始化一个全零的二维张量 one_hot_results,然后根据每条文本的整数序列,将对应位置置为1,生成one-hot编码。

    结果

    tensor([[0., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0.],[0., 1., 0., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1.],[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0.]])
    
  8. 打印结果

    print("词汇表: \n", word_index)
    print("文本: \n", texts)
    print("分词结果: \n", tokenized_texts)
    print("文本序列: \n", sequences)
    print("One-Hot编码: \n", one_hot_results)
    

    操作:打印出词汇表、原文本、分词结果、文本序列和one-hot编码。

  9. 总结
    这段代码的核心功能是将中文文本分词后,生成相应的整数序列,再转换为one-hot编码。每一步操作后数据的状态如下:

  • texts:包含原始文本的列表。
  • tokenized_texts:包含分词后的文本列表。
  • word_indexindex_word:分别存储单词到索引和索引到单词的映射字典。
  • sequences:包含整数序列的列表。
  • one_hot_results:包含one-hot编码的二维张量。

2.直接使用词袋模型(CountVectorizer)实现独热编码

import torch
import torch.nn.functional as F
import jieba
from sklearn.feature_extraction.text import CountVectorizer
import re# 示例中文文本
texts = ['你好,最近怎么样?','我过的很好,谢谢!','再见。']# 使用结巴分词进行分词,并移除标点符号 
tokenized_texts = [' '.join(re.findall(r'\w+', ' '.join(jieba.cut(text)))) for text in texts] # 结果:['你好 最近 怎么样', '我 过 的 很好 谢谢', '再见']"""
注意此处代码和上述代码不一致的原因是:CountVectorizer 期望接收的输入是一个字符串列表,但我们提供了一个分词后的列表列表。
为了使用 CountVectorizer 并确保标点符号被移除,我们需要确保输入是字符串而不是分词后的列表。
"""# cv = CountVectorizer() # 创建词袋数据结构
cv = CountVectorizer(token_pattern=r"(?u)\b[\u4e00-\u9fa5a-zA-Z]+\b")  # 仅匹配中文字符和英文单词cv_fit = cv.fit_transform(tokenized_texts)  # CountVectorizer 用于将文本转换为词袋模型。fit_transform 方法同时完成拟合模型和将文本转化为特征向量的操作。# 将词频矩阵转换为 tensor
tensor_result = torch.from_numpy(cv_fit.toarray()).float()print("文本: \n",texts)
print("分词结果: \n",tokenized_texts)
print("列表形式的字典: \n",cv.get_feature_names_out())    #列表形式呈现文章生成的词典,和鲸线上需要使用get_feature_names()
print("字典: \n",cv.vocabulary_)       #字典形式呈现,key:词,value:词id
print("token计数矩阵:\n",cv_fit.toarray()) #.toarray() 将结果转化为稀疏矩阵 一行对应着一句话,一列对应一个词,列index对应词id
print("词频矩阵的 tensor 表示:\n", tensor_result)
文本: ['你好,最近怎么样?', '我过的很好,谢谢!', '再见。']
分词结果: ['你好 最近 怎么样', '我过 的 很 好 谢谢', '再见']
列表形式的字典: ['你好' '再见' '好' '很' '怎么样' '我过' '最近' '的' '谢谢']
字典: {'你好': 0, '最近': 6, '怎么样': 4, '我过': 5, '的': 7, '很': 3, '好': 2, '谢谢': 8, '再见': 1}
token计数矩阵:[[1 0 0 0 1 0 1 0 0][0 0 1 1 0 1 0 1 1][0 1 0 0 0 0 0 0 0]]
词频矩阵的 tensor 表示:tensor([[1., 0., 0., 0., 1., 0., 1., 0., 0.],[0., 0., 1., 1., 0., 1., 0., 1., 1.],[0., 1., 0., 0., 0., 0., 0., 0., 0.]])

这篇关于深度学习每周学习总结N1(one-hot 编码案例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056778

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree