「动态规划」买卖股票的最佳时机,如何处理冷冻期?

2024-06-13 04:28

本文主要是介绍「动态规划」买卖股票的最佳时机,如何处理冷冻期?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

309. 买卖股票的最佳时机含冷冻期icon-default.png?t=N7T8https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-cooldown/

给定一个整数数组prices,其中prices[i]表示第i天的股票价格。​设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):卖出股票后,你无法在第二天买入股票 (即冷冻期为1天)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  1. 输入:prices = [1,2,3,0,2],输出:3,解释:对应的交易状态为:买入,卖出,冷冻期,买入,卖出。
  2. 输入:prices = [1],输出:0。

提示:1 <= prices.length <= 5000,0 <= prices[i] <= 1000。


我们用动态规划的思想来解决这个问题。

确定状态表示:根据经验和题目要求,我们用dp[i]表示:在第i天结束后的最大利润。但是,这个状态表示不够细致,不容易推出状态转移方程。

在第i天结束后:

  • 如果你手里有股票,那么你处于买入状态。
  • 如果你手里没有股票,且在第i天刚刚卖出股票,那么你处于冷冻期状态。
  • 如果你手里没有股票,且并没有在第i天卖出股票,那么你处于可交易状态。

所以,我们把状态表示细分为:

  • 用dp[i][0]表示:在第i天结束后,处于买入状态下,此时的最大利润。
  • 用dp[i][1]表示:在第i天结束后,处于冷冻期状态下,此时的最大利润。
  • 用dp[i][2]表示:在第i天结束后,处于可交易状态下,此时的最大利润。

推导状态转移方程:我们思考一下在第i天可以进行的操作。

  • 在第i - 1天结束后,如果你处于买入状态:
    • 你可以在第i天什么都不做,继续持有股票,在第i天结束后依然处于买入状态。
    • 你也可以在第i天卖出股票,在第i天结束后处于冷冻期状态。
  • 在第i - 1天结束后,如果你处于冷冻期状态:
    • 你只能选择什么都不做,在第i天结束后就解冻了,处于可交易状态。
  • 在第i - 1天结束后,如果你处于可交易状态:
    • 你可以选择在第i天什么都不做,在第i天结束后依然处于可交易状态。
    • 你也可以选择在第i天买入股票,在第i天结束后处于买入状态。
    • 你也可以选择在第i天买入股票,接着立刻卖出股票,在第i天结束后处于冷冻期状态。但是这么做是没意义的,并不会增加利润,所以在分析状态转移方程时不考虑这种操作。

如何计算利润呢?初始利润是0,

  • 如果买入股票,那么利润要减去股票当天的价格。
  • 如果卖出股票,那么利润就要加上股票当天的价格。
  • 如果什么都不做,那么利润不变。

接下来,考虑最近的一步,即第i - 1天结束后的状态和第i天的操作。

  • 如果第i天结束后处于买入状态,此时的最大利润dp[i][0]是以下情况的最大值。
    • 如果第i - 1天结束后处于买入状态,在第i天什么都不做,在第i天结束后的最大利润就是在第i - 1天结束后的最大利润,即dp[i - 1][0]。
    • 如果第i - 1天结束后处于可交易状态,在第i天买入股票,在第i天结束后的最大利润就是在第i - 1天结束后的最大利润减去股票在第i天的价格,即dp[i - 1][2] - prices[i]。
  • 如果第i天结束后处于冷冻期状态,此时的最大利润dp[i][1]是以下情况的最大值。
    • 由于不考虑买入后立刻卖出的情况,只有可能是在第i - 1天结束后处于买入状态,在第i天卖出股票,在第i天结束后的最大利润就是在第i - 1天结束后的最大利润加上股票在第i天的价格,即dp[i - 1][0] + prices[i]。
  • 如果第i天结束后处于可交易状态,此时的最大利润dp[i][2]是以下情况的最大值。
    • 如果第i - 1天结束后处于冷冻期状态,在第i天什么都不做,在第i天结束后的最大利润就是在第i - 1天结束后的最大利润,即dp[i - 1][1]。
    • 如果第i - 1天结束后处于可交易状态,在第i天什么都不做,在第i天结束后的最大利润就是在第i - 1天结束后的最大利润,即dp[i - 1][2]。

综上所述:dp[i][0] = max(dp[i - 1][0], dp[i - 1][2] - prices[i]),dp[i][1] = dp[i - 1][0] + prices[i],dp[i][2] = max(dp[i - 1][1], dp[i - 1][2])

初始化:根据状态转移方程,在计算dp[0][j],其中j的范围是[0, 2]时,会越界访问,所以需要对其初始化。

  • 如果第0天结束后处于买入状态,只能在第0天买入股票,显然dp[0][0] = -prices[0]。
  • 如果在第0天结束后处于冷冻期状态,只能在第0天买入后立刻卖出股票(这种操作没有意义,但是初始化时只能这么解释),显然dp[0][1] = 0。
  • 如果在第0天结束后处于可交易状态,只能在第0天什么都不做,显然dp[0][2] = 0。

综上所述:dp[0][0] = -prices[0],dp[0][1] = dp[0][2] = 0

填表顺序:根据状态转移方程,dp[i][j]依赖于dp[i - 1][j],所以应沿着i增大的方向填表

返回值:假设总共有n天,那么对于第i天,i的范围就是[0, n - 1]。如果要获取最大利润,那么第n - 1天结束后不能处于买入状态(手中有股票的话,在最后一天卖出会获得更高的利润),所以在第n - 1天结束后只有可能处于冷冻期状态或者可交易状态。再根据状态表示,我们最终要返回的是,在第n - 1天结束后处于冷冻期状态或者可交易状态这2种情况中,最大利润的较大值,即max(dp[n - 1][1], dp[n - 1][2])

细节问题:由于下标i的范围是[0, n - 1],下标j的范围是[0, 2],所以dp表的规模是n x 3

时间复杂度:O(N),空间复杂度:O(N)。

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();// 创建dp表vector<vector<int>> dp(n, vector<int>(3));// 初始化dp[0][0] = -prices[0];// 填表for (int i = 1; i < n; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][2] - prices[i]);dp[i][1] = dp[i - 1][0] + prices[i];dp[i][2] = max(dp[i - 1][1], dp[i - 1][2]);}// 返回结果return max(dp[n - 1][1], dp[n - 1][2]);}
};

这篇关于「动态规划」买卖股票的最佳时机,如何处理冷冻期?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056277

相关文章

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是