神经网络实战——基于TensorFlow的MNIST手写数据集实现

2024-06-13 02:48

本文主要是介绍神经网络实战——基于TensorFlow的MNIST手写数据集实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorFlow实战——基于神经网络的MNIST手写数据集实现

  • 一、代码结果
  • 二、代码展示

说明:前几篇博客已经介绍了TensorFlow的基本知识以及神经网络的简单实现,该篇博客通过一个具体例子来具体回顾前面所讲的内容。通过该神经网络,可以达到98.4%的正确率。

一、代码结果

在这里插入图片描述
在这里插入图片描述

二、代码展示

"""
this script shows how to realize MNIST_dataset by neural network.
As a result, its accuracy is about 98.4%
"""import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data# 关于MNIST数据集的一些常量
# 输入层节点数,等于图片的像素点的个数,28*28
INPUT_LAYER = 784
# 输出层节点数,等于MNIST数据集中类别的数目
OUTPUT_LAYER = 10# 配置神经网络参数
# 隐藏层节点数
HIDDEN_LAYER = 500
# 一个训练batch中训练数据的个数。数字越小,训练越接近随机梯度下降;数据越大,训练越接近梯度下降
BATCH_SIZE = 100
# 基础学习率
LEARNING_RATE_BASE = 0.8
# 学习率的衰减率
LEARNING_RATE_DECAY = 0.99
# 描述模型复杂度的正则化项在损失函数中的系数
REGULARIZATION_RATE = 0.0001
# 训练轮数
TRAINING_STEPS = 30000
# 滑动平均衰减率
MOVING_AVERAGE_DECAY = 0.99def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):"""一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果。在这里定义了一个使用Relu激活函数的三层全连接神经网络。通过加入隐藏层实现了多层网络结构,通过Relu激活函数去线性化。在这个函数中也支持传入用于计算参数平均值的类,这样方便在测试时使用滑动平均模型"""# 当没有提供滑动平均类时,直接使用参数当前的取值if avg_class is None:layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)print("[DEBUG] layer1.shape: {}".format(layer1))print("[DEBUG] biases2.shape: {}".format(biases2))print("[DEBUG] weights2.shape: {}".format(weights2))# 计算输出层的前向传播结果。因为在计算损失函数时会一起计算softmax函数,所以这里不需要加入激活函数。# 而且不加入softmax不会影响预测结果。return tf.matmul(layer1, weights2) + biases2else:# 首先使用avg_class.average计算变量的滑动平均值,然后计算神经网络的前向传播结果layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)def train(mnist):x = tf.placeholder(tf.float32, shape=(None, INPUT_LAYER), name="x_input")y_real = tf.placeholder(tf.float32, shape=(None, OUTPUT_LAYER), name="y_real")# 隐藏层参数weight1 = tf.Variable(tf.truncated_normal([INPUT_LAYER, HIDDEN_LAYER], stddev=0.1))biases1 = tf.Variable(tf.constant(value=0.1, shape=[HIDDEN_LAYER]))# 输出层参数weight2 = tf.Variable(tf.truncated_normal([HIDDEN_LAYER, OUTPUT_LAYER], stddev=0.1))biases2 = tf.Variable(tf.constant(value=0.1, shape=[OUTPUT_LAYER]))# 计算当前参数下前向传播的结果,这里用于计算滑动平均的类为None,所以函数不会使用参数的滑动平均值y_pred = inference(x, None, weight1, biases1, weight2, biases2)# 定义训练的轮数,这个变量不需要计算滑动平均值,所以指定为不可训练的变量。使用TensorFlow训练神经网络时,一般将# 代表训练轮数的变量指定为不可训练的参数(trainable=false)global_step = tf.Variable(0, trainable=False)# 给定滑动平均衰减率和训练的轮数,初始化滑动平均类variables_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)# 在所有代表神经网络的参数的变量上使用滑动平均。tf.trainable_variables()返回图上集合GraphKeys.TRAINABLE_VARIABLES# 中的元素,这个集合就是所有没有指定trainable=False的参数variables_averages_op = variables_averages.apply(tf.trainable_variables())# 计算使用滑动平均之后的前向传播结果y_pred_average = inference(x, variables_averages, weight1, biases1, weight2, biases2)# print("[DEBUG] y_pred.shape: {}".format(y_pred))# print("[DEBUG] tf.argmax(y_real, axis=1).shape: {}".format(tf.argmax(y_real, 1)))# 计算交叉熵刻画预测值和真实值之间差距的损失函数。cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y_pred, labels=tf.argmax(y_real, axis=1))# 计算当前batch中交叉熵均值cross_entropy_mean = tf.reduce_mean(cross_entropy)# 计算l2正则化损失函数regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)regularization = regularizer(weight1) + regularizer(weight2)# 总损失等于交叉熵损失加正则化损失total_loss = cross_entropy_mean + regularization# 设置指数衰减学习率learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE,LEARNING_RATE_DECAY)# 使用梯度下降优化算法优化损失函数train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss, global_step=global_step)# 在训练神经网络模型时,每过一遍数据既需要通过反向传播来更新神经网络参数,又要更新每一个参数的滑动平均值。# 为了一次完成多个操作,TensorFlow提供了tf.control_dependencies和tf.group两种机制,下面两种机制等价# train_op = tf.group(train_step, variables_averages_op)with tf.control_dependencies([train_step, variables_averages_op]):train_op = tf.no_op(name="train")# 检验使用了滑动平均模型的神经网络前向传播结果是否正确correct_prediction = tf.equal(tf.argmax(y_pred_average, 1), tf.argmax(y_real, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))# 初始化会话并开始训练过程with tf.Session() as sess:tf.global_variables_initializer().run()# 准备验证数据validate_feed = {x: mnist.validation.images, y_real: mnist.validation.labels}# 准备测试数据test_feed = {x: mnist.test.images, y_real: mnist.test.labels}# 训练神经网络for i in range(TRAINING_STEPS):# 每1000轮输出一下在验证集上的测试结果if i % 1000 == 0:validate_acc = sess.run(accuracy, feed_dict=validate_feed)print("after %d training steps, validation accuracy using average model is %f" % (i, validate_acc))# 产生这一轮使用的一个batch的训练数据,并允许训练过程xs, ys = mnist.train.next_batch(BATCH_SIZE)sess.run(train_op, feed_dict={x: xs, y_real: ys})# 在训练结束后,在测试数据上检测神经网络模型的最终正确率test_acc = sess.run(accuracy, feed_dict=test_feed)print("after %d training steps, test accuracy using average model is %f" % (TRAINING_STEPS, test_acc))def main(argv=None):# 声明MNIST数据集的类,这个类在初始化时会自动下载数据mnist = input_data.read_data_sets("/data", one_hot=True)train(mnist)if __name__ == '__main__':tf.app.run()

这篇关于神经网络实战——基于TensorFlow的MNIST手写数据集实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056072

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi