神经网络实战——基于TensorFlow的MNIST手写数据集实现

2024-06-13 02:48

本文主要是介绍神经网络实战——基于TensorFlow的MNIST手写数据集实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorFlow实战——基于神经网络的MNIST手写数据集实现

  • 一、代码结果
  • 二、代码展示

说明:前几篇博客已经介绍了TensorFlow的基本知识以及神经网络的简单实现,该篇博客通过一个具体例子来具体回顾前面所讲的内容。通过该神经网络,可以达到98.4%的正确率。

一、代码结果

在这里插入图片描述
在这里插入图片描述

二、代码展示

"""
this script shows how to realize MNIST_dataset by neural network.
As a result, its accuracy is about 98.4%
"""import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data# 关于MNIST数据集的一些常量
# 输入层节点数,等于图片的像素点的个数,28*28
INPUT_LAYER = 784
# 输出层节点数,等于MNIST数据集中类别的数目
OUTPUT_LAYER = 10# 配置神经网络参数
# 隐藏层节点数
HIDDEN_LAYER = 500
# 一个训练batch中训练数据的个数。数字越小,训练越接近随机梯度下降;数据越大,训练越接近梯度下降
BATCH_SIZE = 100
# 基础学习率
LEARNING_RATE_BASE = 0.8
# 学习率的衰减率
LEARNING_RATE_DECAY = 0.99
# 描述模型复杂度的正则化项在损失函数中的系数
REGULARIZATION_RATE = 0.0001
# 训练轮数
TRAINING_STEPS = 30000
# 滑动平均衰减率
MOVING_AVERAGE_DECAY = 0.99def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):"""一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果。在这里定义了一个使用Relu激活函数的三层全连接神经网络。通过加入隐藏层实现了多层网络结构,通过Relu激活函数去线性化。在这个函数中也支持传入用于计算参数平均值的类,这样方便在测试时使用滑动平均模型"""# 当没有提供滑动平均类时,直接使用参数当前的取值if avg_class is None:layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)print("[DEBUG] layer1.shape: {}".format(layer1))print("[DEBUG] biases2.shape: {}".format(biases2))print("[DEBUG] weights2.shape: {}".format(weights2))# 计算输出层的前向传播结果。因为在计算损失函数时会一起计算softmax函数,所以这里不需要加入激活函数。# 而且不加入softmax不会影响预测结果。return tf.matmul(layer1, weights2) + biases2else:# 首先使用avg_class.average计算变量的滑动平均值,然后计算神经网络的前向传播结果layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)def train(mnist):x = tf.placeholder(tf.float32, shape=(None, INPUT_LAYER), name="x_input")y_real = tf.placeholder(tf.float32, shape=(None, OUTPUT_LAYER), name="y_real")# 隐藏层参数weight1 = tf.Variable(tf.truncated_normal([INPUT_LAYER, HIDDEN_LAYER], stddev=0.1))biases1 = tf.Variable(tf.constant(value=0.1, shape=[HIDDEN_LAYER]))# 输出层参数weight2 = tf.Variable(tf.truncated_normal([HIDDEN_LAYER, OUTPUT_LAYER], stddev=0.1))biases2 = tf.Variable(tf.constant(value=0.1, shape=[OUTPUT_LAYER]))# 计算当前参数下前向传播的结果,这里用于计算滑动平均的类为None,所以函数不会使用参数的滑动平均值y_pred = inference(x, None, weight1, biases1, weight2, biases2)# 定义训练的轮数,这个变量不需要计算滑动平均值,所以指定为不可训练的变量。使用TensorFlow训练神经网络时,一般将# 代表训练轮数的变量指定为不可训练的参数(trainable=false)global_step = tf.Variable(0, trainable=False)# 给定滑动平均衰减率和训练的轮数,初始化滑动平均类variables_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)# 在所有代表神经网络的参数的变量上使用滑动平均。tf.trainable_variables()返回图上集合GraphKeys.TRAINABLE_VARIABLES# 中的元素,这个集合就是所有没有指定trainable=False的参数variables_averages_op = variables_averages.apply(tf.trainable_variables())# 计算使用滑动平均之后的前向传播结果y_pred_average = inference(x, variables_averages, weight1, biases1, weight2, biases2)# print("[DEBUG] y_pred.shape: {}".format(y_pred))# print("[DEBUG] tf.argmax(y_real, axis=1).shape: {}".format(tf.argmax(y_real, 1)))# 计算交叉熵刻画预测值和真实值之间差距的损失函数。cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y_pred, labels=tf.argmax(y_real, axis=1))# 计算当前batch中交叉熵均值cross_entropy_mean = tf.reduce_mean(cross_entropy)# 计算l2正则化损失函数regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)regularization = regularizer(weight1) + regularizer(weight2)# 总损失等于交叉熵损失加正则化损失total_loss = cross_entropy_mean + regularization# 设置指数衰减学习率learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE,LEARNING_RATE_DECAY)# 使用梯度下降优化算法优化损失函数train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss, global_step=global_step)# 在训练神经网络模型时,每过一遍数据既需要通过反向传播来更新神经网络参数,又要更新每一个参数的滑动平均值。# 为了一次完成多个操作,TensorFlow提供了tf.control_dependencies和tf.group两种机制,下面两种机制等价# train_op = tf.group(train_step, variables_averages_op)with tf.control_dependencies([train_step, variables_averages_op]):train_op = tf.no_op(name="train")# 检验使用了滑动平均模型的神经网络前向传播结果是否正确correct_prediction = tf.equal(tf.argmax(y_pred_average, 1), tf.argmax(y_real, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))# 初始化会话并开始训练过程with tf.Session() as sess:tf.global_variables_initializer().run()# 准备验证数据validate_feed = {x: mnist.validation.images, y_real: mnist.validation.labels}# 准备测试数据test_feed = {x: mnist.test.images, y_real: mnist.test.labels}# 训练神经网络for i in range(TRAINING_STEPS):# 每1000轮输出一下在验证集上的测试结果if i % 1000 == 0:validate_acc = sess.run(accuracy, feed_dict=validate_feed)print("after %d training steps, validation accuracy using average model is %f" % (i, validate_acc))# 产生这一轮使用的一个batch的训练数据,并允许训练过程xs, ys = mnist.train.next_batch(BATCH_SIZE)sess.run(train_op, feed_dict={x: xs, y_real: ys})# 在训练结束后,在测试数据上检测神经网络模型的最终正确率test_acc = sess.run(accuracy, feed_dict=test_feed)print("after %d training steps, test accuracy using average model is %f" % (TRAINING_STEPS, test_acc))def main(argv=None):# 声明MNIST数据集的类,这个类在初始化时会自动下载数据mnist = input_data.read_data_sets("/data", one_hot=True)train(mnist)if __name__ == '__main__':tf.app.run()

这篇关于神经网络实战——基于TensorFlow的MNIST手写数据集实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056072

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象