大型语言模型(LLMs)的后门攻击和防御技术

2024-06-13 01:28

本文主要是介绍大型语言模型(LLMs)的后门攻击和防御技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    大型语言模型(LLMs)通过训练在大量文本语料库上,展示了在多种自然语言处理(NLP)应用中取得最先进性能的能力。与基础语言模型相比,LLMs在少样本学习和零样本学习场景中取得了显著的性能提升,这得益于模型规模的扩大。随着模型参数的增加和高质量训练数据的获取,LLMs更能识别语言中的固有模式和语义信息。

    尽管部署语言模型有潜在的好处,但它们因易受对抗性攻击、越狱攻击和后门攻击的脆弱性而受到批评。最近的研究表明,后门攻击可以轻易地在被破坏的LLMs上执行。随着LLMs应用的日益广泛,对后门攻击的研究对于确保LLMs的安全至关重要。

1 后门攻击背景

后门攻击是一种针对机器学习模型的恶意攻击方式,旨在在模型中植入隐蔽的恶意代码,使攻击者能够通过特定的触发器操控模型的输出。对于大型语言模型(LLMs)而言,后门攻击是一个潜在的安全威胁,需要引起重视。

1.1 后门攻击构成要素

一个有效的后门攻击通常包含以下几个关键要素:

  • 触发器 (Trigger): 触发器是后门攻击的“开关”,用于激活后门行为。触发器可以是字符、单词、句子、文本风格或语法结构等。
  • 植入 (Implantation): 植入是指将触发器嵌入到训练样本或模型权重中,使模型学习到触发器与目标标签之间的关联。
  • 目标标签 (Target Label): 目标标签是攻击者希望模型在触发器激活时预测的标签。
  • 攻击者 (Attacker): 攻击者是指发起后门攻击的个人或组织,他们通常拥有访问训练数据或模型部署的权限。
  • 受害者模型 (Victim Model): 受害者模型是指被植入后门的机器学习模型,它在遇到触发器时会表现出异常行为。

1.2 基准数据集

  • 文本分类:SST-2、IMDB、YELP等。
  • 生成任务:IWSLT、WMT、CNN/Daily Mail等。

1.3 评估指标

后门攻击的评估指标用于衡量攻击的效果、模型的鲁棒性以及攻击的隐蔽性。选择合适的评估指标对于评估后门攻击的成功率和模型的防御能力至关重要。

  • 攻击成功率 (Attack Success Rate, ASR): 攻击成功率是指模型在遇到触发器时预测目标标签的概率。ASR越高,表示攻击效果越好。
  • 清洁准确率 (Clean Accuracy, CA): 清洁准确率是指模型在遇到未中毒样本时预测正确标签的概率。CA越高,表示模型的鲁棒性越好。
  • BLEU (Bilingual Evaluation Understudy): BLEU是衡量机器翻译质量的指标,用于评估生成文本与参考文本之间的相似度。
  • ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE是衡量自动摘要质量的指标,用于评估摘要与原文之间的重合度。
  • 困惑度 (Perplexity, PPL): 困惑度是衡量语言模型生成文本流畅性的指标,困惑度越低,表示生成文本越流畅。
  • 语法错误率: 语法错误率是衡量生成文本语法正确性的指标,错误率越低,表示生成文本语法越正确。
  • 相似度 (Similarity): 相似度是衡量中毒样本与未中毒样本之间相似程度的指标,相似度越高,表示中毒样本越隐蔽。

不同任务适合不同的评估指标:

  • 文本分类: 主要使用ASR和CA作为评估指标。
  • 机器翻译: 主要使用BLEU作为评估指标。
  • 自动摘要: 主要使用ROUGE和PPL作为评估指标。
  • 问答: 主要使用精确率、召回率和F1分数作为评估指标。

2  后门攻击分类

2.1 基于全参数微调的后门攻击 (Full-parameter Fine-tuning)

全参数微调的后门攻击是通过在训练过程中对模型的所有参数进行更新来实现的。这类攻击通常需要访问模型的训练数据,并在其中嵌入含有特定触发器的被毒化样本。这些样本在训练时会影响模型的学习过程,使得当触发器出现在输入中时,模型会按照攻击者的预期产生特定的输出。

  • 利用LLMs自动嵌入指定文本风格作为触发器。
  • 通过上下文学习植入后门,并最小化微调对模型泛化性能的影响。
  • 探索强化学习微调的安全性,例如通过操纵排名分数。
  • 利用ChatGPT等黑盒生成模型生成恶意样本和修改标签。
  • 利用手动编写的提示作为触发器,实现清洁标签后门攻击。
  • 利用GPT-4生成恶意模板作为触发器。
  • 通过模型编辑实现高效的后门攻击,同时保持模型性能。
  • 探索检索增强生成(RAG)的安全性,通过植入恶意文本到知识库。
  • 研究LLM-based代理的安全性,发现攻击者可以通过后门攻击操纵模型输出。

2.2 基于参数高效微调的后门攻击( (Parameter-Efficient Fine-Tuning)

一种更新模型中一小部分参数的方法,以减少计算资源的需求。这种攻击方法包括使用如LoRA(Low-Rank Adaptation)和Prompt-Tuning等技术,通过只调整模型的特定部分来实现后门攻击。

2.2.1 提示微调

  • 自动生成具有通用性和隐蔽性的触发器。
  • 利用两阶段优化算法攻击硬提示和软提示模型。
  • 嵌入多个触发键到多个提示组件,增强隐蔽性。

2.2.2 LoRA

  • 通过注入后门实现LLMs的隐蔽和持久性失配。
  • 探索低秩适配器是否可以被恶意操控。
  • 研究参数高效微调对后门攻击触发模式的影响。

2.2.3 指令微调

  • 通过指令微调攻击LLMs,使其在遇到触发器时生成与攻击者目标一致的输出。
  • 利用少量恶意指令攻击LLMs,并展示其可迁移性。
  • 通过虚拟提示注入攻击指令微调模型,无需植入显式触发器。
  • 利用梯度引导的后门触发器学习算法,保持指令和样本标签不变,提高隐蔽性。

2.3 无需微调的后门攻击(Backdoor Attacks without Fine-tuning)

这类攻击不依赖于模型参数的更新,而是通过其他手段触发后门。例如,利用模型的推理过程中的漏洞或者通过构造特殊的输入样本来激活后门。

2.3.1 LoRA

  • 在共享和播放场景下,利用LoRA算法注入后门。
  • 通过合并对抗性LoRA和良性LoRA实现后门攻击。

2.3.2 思维链(CoT)

  • 通过CoT提示攻击LLMs,无需访问训练数据或模型权重。
  • 插入恶意推理步骤到CoT推理步骤序列,操控模型最终响应。

2.3.3 上下文学习(ICL)

  • 通过示例中毒和示例提示中毒攻击ICL模型。
  • 在模型推理时,利用ICL的类比推理特性,诱导模型按照预定义意图行动。
  • 指令攻击:
  • 通过设计包含后门指令的提示攻击LLMs,无需微调或修改模型参数。

3 后门攻击的应用

后门攻击是一种具有两面性的技术,既可以用于恶意攻击,也可以用于数据保护和模型版权保护等有益用途。

3.1 恶意用途

  • 数据泄露: 攻击者可以利用后门攻击窃取模型训练数据,从而获取敏感信息。
  • 模型破坏: 攻击者可以利用后门攻击破坏模型的性能,使其无法正常工作。
  • 数据篡改: 攻击者可以利用后门攻击篡改模型输出,例如修改文本分类结果或机器翻译结果。
  • 虚假信息传播: 攻击者可以利用后门攻击生成虚假信息,并通过模型进行传播。

3.2 有益用途

  • 数据保护: 研究人员可以利用后门攻击技术开发数据保护技术,例如水印技术,用于跟踪和验证数据的使用情况。
  • 模型版权保护: 研究人员可以利用后门攻击技术开发模型版权保护技术,例如水印技术,用于保护模型的知识产权。
  • 恶意行为检测: 研究人员可以利用后门攻击技术开发恶意行为检测技术,例如样本检测算法,用于识别和过滤中毒样本。

4 后门攻击防御

后门攻击是一种针对模型漏洞的攻击手段,因此防御后门攻击需要从多个方面入手,包括样本检测、模型修改、安全训练等。以下是一些常见的后门攻击防御方法:

4.1 样本检测

样本检测的目标是识别和过滤中毒样本或触发器,防止后门被激活。常见的样本检测方法包括:

  • 基于困惑度的检测: 通过计算样本的困惑度,可以识别出中毒样本中的触发器。例如,ONION算法通过计算不同token对样本困惑度的影响,可以识别出字符级触发器。
  • 基于预测置信度的检测: 通过比较中毒样本和扰动样本在目标标签上的置信度差异,可以识别出中毒样本。例如,RAP算法,通过计算中毒样本和扰动样本在目标标签上的置信度差异,可以识别出中毒样本。
  • 基于触发器检测的检测: 通过训练一个触发器检测器,可以识别出中毒样本中的触发器。例如,BFClass算法预训练了一个触发器检测器,可以识别出潜在的触发器集合,并利用基于类别的策略清除中毒样本。
  • 基于模型变异的检测: 通过比较模型及其变体之间的预测差异,可以识别出中毒样本。例如,中毒样本检测器,可以识别出模型及其变体之间的预测差异,从而识别出中毒样本。

4.2 模型修改

模型修改的目标是修改模型的权重,消除后门代码,同时保持模型的性能。常见的模型修改方法包括:

  • 知识蒸馏: 通过知识蒸馏,可以使用一个无后门的模型来纠正中毒模型的输出,从而消除后门代码。
  • 模型剪枝: 通过剪枝,可以删除中毒样本激活的神经元,从而阻断后门的激活路径。
  • 模型混合: 通过混合中毒模型和清洁预训练模型的权重,可以降低后门代码的影响。
  • 温度调整: 通过调整softmax函数中的温度系数,可以改变模型的训练损失,从而消除后门代码。

4.3 安全训练

安全训练的目标是在模型训练过程中避免后门代码的植入。常见的安全训练方法包括:

  • 数据清洗: 通过数据清洗,可以去除训练数据中的中毒样本,从而避免后门代码的植入。
  • 对抗训练: 通过对抗训练,可以使模型对中毒样本更加鲁棒,从而降低后门攻击的成功率。
  • 防御性蒸馏: 通过防御性蒸馏,可以使用一个无后门的模型来纠正中毒模型的输出,从而避免后门代码的植入。

5 后门攻击的挑战

后门攻击作为一种针对模型的攻击手段,面临着许多挑战。以下是一些主要的挑战:

5.1 触发器设计 (Trigger Design)

现有的后门攻击在受害模型上展示了有希望的结果。然而,后门攻击的部署通常需要在样本中嵌入触发器,这可能会损害这些样本的流畅性。重要的是,包含触发器的样本有可能改变实例的原始语义。

  • 隐蔽性: 如何设计隐蔽性高的触发器,使其难以被检测到,是后门攻击面临的一个主要挑战。
  • 通用性: 如何设计通用性高的触发器,使其能够适用于不同的数据集、网络架构、任务和场景,是后门攻击面临的另一个主要挑战。
  • 多样性: 如何设计多种类型的触发器,以提高攻击的灵活性,是后门攻击面临的又一个主要挑战。

5.2 污染方式

  • 数据污染: 如何在数据集中植入中毒样本,同时保持数据集的完整性和一致性,是后门攻击面临的一个主要挑战。
  • 模型污染: 如何直接修改模型权重,植入后门代码,同时保持模型的性能,是后门攻击面临的另一个主要挑战。

5.3 攻击目标

  • 特定任务: 如何针对特定任务设计有效的后门攻击算法,是后门攻击面临的一个主要挑战。
  • 通用任务: 如何设计通用攻击算法,使其能够攻击多种类型的任务,是后门攻击面临的另一个主要挑战。

5.4 攻击规模

  • 小规模攻击: 如何使用少量中毒样本进行攻击,同时提高攻击的成功率,是后门攻击面临的一个主要挑战。
  • 大规模攻击: 如何使用大量中毒样本进行攻击,同时降低攻击成本和被检测到的风险,是后门攻击面临的另一个主要挑战。

5.5 攻击时机

  • 训练时攻击: 如何在模型训练过程中植入后门代码,同时避免被检测到,是后门攻击面临的一个主要挑战。
  • 微调时攻击: 如何在模型微调过程中植入后门代码,同时保持模型的性能,是后门攻击面临的另一个主要挑战。
  • 推理时攻击: 如何在模型推理过程中激活后门代码,同时避免被检测到,是后门攻击面临的又一个主要挑战。

5.6 其他挑战

  • 防御策略: 如何应对日益复杂的防御策略,是后门攻击面临的一个主要挑战。
  • 解释性: 如何解释后门攻击的原理和机制,是后门攻击面临的另一个主要挑战。
  • 评估指标: 如何评估后门攻击的效果和安全性,是后门攻击面临的又一个主要挑战。

这篇关于大型语言模型(LLMs)的后门攻击和防御技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055902

相关文章

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费