穿梭时空的实时计算框架——Flink对于时间的处理

2024-06-12 21:58

本文主要是介绍穿梭时空的实时计算框架——Flink对于时间的处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink对于流处理架构的意义十分重要,Kafka让消息具有了持久化的能力,而处理数据,甚至穿越时间的能力都要靠Flink来完成。

我们知道,对于流式处理最重要的两件事,正确性,时间推理工具。而Flink对两者都有非常好的支持。

Flink对于正确性的保证

对于连续的事件流数据,由于我们处理时可能有事件暂未到达,可能导致数据的正确性受到影响,现在采取的普遍做法的通过高延迟的离线计算保证正确性,但是也牺牲了低延迟。

Flink的正确性体现在计算窗口的定义符合数据产生的自然规律。比如点击流事件,追踪3个用户A,B,C的访问情况。我们看到数据是可能有间隙的,这也就是session窗口。

640?wx_fmt=png

用SparkStreaming的微批处理方式(虚线为计算窗口,实线是会话窗口),很难做到计算窗口与会话窗口的吻合。而使用Flink的流处理API,可以灵活的定义计算窗口。比如可以设置一个值,如果超出这个值就认为活动结束。

640?wx_fmt=png

不同于一般的流处理,Flink可以采用事件时间,这对于正确性非常有用。

对于发生故障性的正确性保证,必须要跟踪计算状态,现在大部分时候状态性的保证是靠开发人员完成的,但是连续的流处理计算没有终点。Flink采用检查点-checkpoint技术解决了这个问题。在每个检查点,系统都会记录中间计算状态,从而在故障发生时准确地重 置。这一方法使系统以低开销的方式拥有了容错能力——当一切正常时, 检查点机制对系统的影响非常小。

Flink提供的接口,包括了跟踪计算的任务,并用同一种技术来实现流处理和批处理,简化了运维开发工作,这也是对正确性的一种保证。

Flink对于时间的处理

用流处理和批处理最大的区别就是对时间的处理。

采用批处理架构处理

在该架构中,我们可以每隔一段时间存储数据,比如存在HDFS中,由调度程序定时的执行,将结果输出。

640?wx_fmt=png

这种架构可行但是有几个问题:

  • 太多独立的部分。为了计算数据中的事件数,这种架构动用了太多系统。每一个系统都有学习成本和管理成本,还可能存在 bug。

  • 对时间的处理方法不明确。假设需要改为每 30 分钟计数一次。这个变动涉及工作流调度逻辑(而不是应用程序代码逻辑),从而使 DevOps 问题 与业务需求混淆。

  • 预警。假设除了每小时计数一次外,还需要尽可能早地收到计数预警( 如在事件数超过10 时预警)。为了做到这一点,可以在定期运行的批处理作业之外,引入 Storm 来采集消息流。Storm 实时提供近似的计数,批处理作业每小时提供准确的计数。但是这样一来,就向架构增加了一个系统,以及与之相关的新编程模型。上述架构叫作 Lambda 架构。

    640?wx_fmt=png

  • 乱序事件流。在现实世界中,大多数事件流都是乱序的,即事件的实际发生顺序和数据中心所记录的顺序不一样。这意味着本属于前一批的事件可能被错误地归入当前一批。批处理架构很难解决这个问题,大部分人则选择忽视它。

  • 批处理作业的界限不清晰。在分割时间点前后的事件既可能被归入前一批,也可能被归入当前一批。

采用流处理

首先将消息集中写入消息传输系统kafka,事件流由消息传输系统提供,并且只被单一的 Flink 作业处理。

640?wx_fmt=png

以时间为单位把事件流分割为一批批任务,这种逻辑完全嵌入在 Flink 程序的应用逻辑中。预警由同一个程序生成,乱序事件由 Flink 自行处理。要从以固定时间分组改为根据产生数据的时间段分组,只需在 Flink 程序中修改对窗口的定义即可。此外,如果应用程序的代码有过改动,只需重播 Kafka 主题,即可重播应用程序。采用流处理架构,可以大幅减少需要学习、管理和编写代码的系统。Flink 应用程序代码示例:

DataStream<LogEvent> stream = env
// 通过Kafka生成数据流
.addSource(new FlinkKafkaConsumer(...))
// 分组
.keyBy("country")
// 将时间窗口设为60分钟
.timeWindow(Time.minutes(60))
// 针对每个时间窗口进行操作
.apply(new CountPerWindowFunction());

在流处理中,主要有两个时间概念 :

事件时间,即事件实际发生的时间。更准确地说,每一个事件都有一个与它相关的时间戳,并且时间戳是数据记录的一部分。

处理时间,即事件被处理的时间。处理时间其实就是处理事件的机器所测量的时间。

640?wx_fmt=png

以《星球大战》系列电影为例。首先上映的 3 部电影是该系列中的第 4、5、 6 部(这是事件时间),它们的上映年份分别是 1977 年、1980 年和 1983 年 (这是处理时间)。之后按事件时间上映的第 1、2、3、7 部,对应的处理时间分别是 1999 年、2002 年、2005 年和 2015 年。由此可见,事件流的顺序可能是乱的(尽管年份顺序一般不会乱)

通常还有第 3 个时间概念,即摄取时间,也叫作进入时间。它指的是事件进入流处理框架的时间。缺乏真实事件时间的数据会被流处理器附上时间戳,即流处理器第一次看到它的时间(这个操作由 source 函数完成,它是程序的第一个处理点)。

在现实世界中,许多因素(如连接暂时中断,不同原因导致的网络延迟, 分布式系统中的时钟不同步,数据速率陡增,物理原因,或者运气差)使 得事件时间和处理时间存在偏差(即事件时间偏差)。事件时间顺序和处理 时间顺序通常不一致,这意味着事件以乱序到达流处理器。

Flink 允许用户根据所需的语义和对准确性的要求选择采用事 件时间、处理时间或摄取时间定义窗口。

窗口

时间窗口是最简单和最有用的一种窗口。它支持滚动和滑动。

比如一分钟滚动窗口收集最近一分钟的数值,并在一分钟结束时输出总和:

640?wx_fmt=png

一分钟滑动窗口计算最近一分钟的数值总和,但每半分钟滑动一次并输出 结果:

640?wx_fmt=png

在 Flink 中,一分钟滚动窗口的定义如下。

stream.timeWindow(Time.minutes(1))

每半分钟(即 30 秒)滑动一次的一分钟滑动窗口如下所示。

stream.timeWindow(Time.minutes(1), Time.seconds(30))

Flink 支持的另一种常见窗口叫作计数窗口。采用计数窗口时,分组依据不 再是时间戳,而是元素的数量。

滑动窗口也可以解释为由 4 个元素组成的计数窗口,并且每两个元素滑动一次。滚动和滑动的计数窗 口分别定义如下。

stream.countWindow(4)
stream.countWindow(4, 2)

虽然计数窗口有用,但是其定义不如时间窗口严谨,因此要谨慎使用。时 间不会停止,而且时间窗口总会“关闭”。但就计数窗口而言,假设其定义 的元素数量为 100,而某个 key 对应的元素永远达不到 100 个,那么窗口就 永远不会关闭,被该窗口占用的内存也就浪费了。

Flink 支持的另一种很有用的窗口是会话窗口。会话窗口由超时时间设定,即希望等待多久才认为会话已经结束。示例如下:

stream.window(SessionWindows.withGap(Time.minutes(5))

触发器

除了窗口之外,Flink 还提供触发机制。触发器控制生成结果的时间,即何时聚合窗口内容并将结果返回给用户。每一个默认窗口都有一个触发器。例如,采用事件时间的时间窗口将在收到水印时被触发。对于用户来说, 除了收到水印时生成完整、准确的结果之外,也可以实现自定义的触发器。

时间回溯

流处理架构的一个核心能力是时间的回溯机制。意味着将数据流倒回至过去的某个时间,重新启动处理程序,直到处理至当前时间为止。Kafka支持这种能力。

640?wx_fmt=png

实时流处理总是在处理最近的数据(即图中“当前时间”的数据),历史流处理 则从过去开始,并且可以一直处理至当前时间。流处理器支持事件时间, 这意味着将数据流“倒带”,用同一组数据重新运行同样的程序,会得到相同的结果。

水印

Flink 通过水印来推进事件时间。水印是嵌在流中的常规记录,计算程序通 过水印获知某个时间点已到。收到水印的窗口就知道 不会再有早于该时间的记录出现,因为所有时间戳小于或等于该时间的事 件都已经到达。这时,窗口可以安全地计算并给出结果(总和)。水印使事 件时间与处理时间完全无关。迟到的水印(“迟到”是从处理时间的角度而言)并不会影响结果的正确性,而只会影响收到结果的速度。

水印由应用程序开发人员生成,这通常需要对相应的领域有 一定的了解。完美的水印永远不会错:时间戳小于水印标记时间的事件不会再出现。

如果水印迟到得太久,收到结果的速度可能就会很慢,解决办法是在水印 到达之前输出近似结果(Flink 可以实现)。如果水印到达得太早,则可能收到错误结果,不过 Flink 处理迟到数据的机制可以解决这个问题。


往期推荐

1、HBase最佳实践 | 聊聊HBase核心配置参数
2、Apache Hudi:剑指数据湖的增量处理框架
3、Hadoop社区比 Ozone 更重要的事情
4、MapReduce Shuffle 和 Spark Shuffle 结业篇

640?wx_fmt=jpeg

这篇关于穿梭时空的实时计算框架——Flink对于时间的处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055448

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na