pyspark dataframe数据分析常用算子

2024-06-12 12:38

本文主要是介绍pyspark dataframe数据分析常用算子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

        • 1.createDataFrame,创建dataframe
        • 2.show
        • 3. filter,过滤
        • 4.空值过滤
        • 空值填充
        • 5. groupBy,分组
        • 6.重命名列
        • 7.explode:一列变多行
        • 8.去重
        • 9. when
        • 10.union,合并dataframe
        • 11.like
        • 12.数据保存
        • 13.drop
        • 14.cast:数据类型转换

1.createDataFrame,创建dataframe
df = spark.createDataFrame([(144.5, 185, 33, 'M', 'China'),(167.2, 165, 45, 'M', 'China'),(124.1, 170, 17, 'F', 'Japan'),(144.5, 185, 33, 'M', 'Pakistan'),(156.5, 180, 54, 'F', None),(124.1, 170, 23, 'F', 'Pakistan'),(129.2, 175, 62, 'M', 'Russia'),], ['weight', 'height', 'age', 'gender', 'country'])
2.show
df.show()
默认会把超过20个字符的部分进行截断,如果不想截断,可以进行如下设置
df.show(truncate=False)
3. filter,过滤

(1)单条件过滤

df.filter(df['age'] == 33)
或者
df.filter('age = 33')

(2)多条件过滤

# 'or'
df.filter((df['age'] == 33) | (df['gender'] == 'M'))
# 'and'
df.filter((df['age'] == 33) & (df['gender'] == 'M'))
4.空值过滤
  1. 过滤某一个属性不为空的记录
df.filter("country is not null")
# 或者
df.filter(df["country"].isNotNull())
# 或者
df[df["country"].isNotNull()]

注意:空字符串""并不会被过滤出来
2. 过滤某一个属性为空的记录

df.filter("country is null")
# 或者
df.filter(df["country"].isNull())
空值填充
df.fillna({"country": "China"})
5. groupBy,分组
  1. 分组后统计数量
df.groupBy(df["age"]).count().show()
+---+-----+
|age|count|
+---+-----+
| 54|    1|
| 33|    2|
| 42|    1|
| 23|    2|
| 45|    1|
+---+-----+
6.重命名列
  1. alias
df.select(F.col("country").alias("state"))
  1. withColumnRenamed
df.withColumnRenamed("country", "state")
7.explode:一列变多行
import pyspark.sql.functions as F
from pyspark.sql.types import *
df = spark.createDataFrame([('u1', 'i1', 'r001,r002,r003'),('u2', 'i2', 'r002,r003'),('u3', 'i3', 'r001')], ['user_id', 'item_id', 'recall_id'])

首先基于recall_id这一列新建一列recall_id_lst

df = df\.withColumn("recall_id_lst", F.udf(lambda x: x.split(','), returnType=ArrayType(StringType()))(F.col("recall_id")))
# 结果
+-------+-------+--------------+------------------+
|user_id|item_id|     recall_id|     recall_id_lst|
+-------+-------+--------------+------------------+
|     u1|     i1|r001,r002,r003|[r001, r002, r003]|
|     u2|     i2|     r002,r003|      [r002, r003]|
|     u3|     i3|          r001|            [r001]|
+-------+-------+--------------+------------------+

然后把recall_id_lst这一列变成多行


df.select("user_id", "item_id", F.explode(F.col("recall_id_lst")).alias("recall_id_plat"))
# 结果
+-------+-------+--------------+
|user_id|item_id|recall_id_plat|
+-------+-------+--------------+
|     u1|     i1|          r001|
|     u1|     i1|          r002|
|     u1|     i1|          r003|
|     u2|     i2|          r002|
|     u2|     i2|          r003|
|     u3|     i3|          r001|
+-------+-------+--------------+
8.去重

基于多列去重

df.dropDuplicates(['weight', 'height'])
9. when
df.withColumn("age_range", F.when(df.age > 60, "old").when((df.age > 18) & (df.age <= 60),"mid").otherwise("young"))
10.union,合并dataframe
df.union(df)
11.like
df.filter(df.country.like('%Jap%'))

可用于判断某一列字段是否包含某些字符串

12.数据保存
df.write.mode("overwrite")\.save(path, header=True, format='csv')
13.drop
df = df.drop("age", "gender")
14.cast:数据类型转换
from pyspark.sql.types import FloatType
df = df.withColumn(col, df[col].cast(FloatType()))

后续会不断把常用到的算子整理到博客中~

【参考】:
1.http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html#pyspark.sql.functions

这篇关于pyspark dataframe数据分析常用算子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054237

相关文章

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L

Python中DataFrame转列表的最全指南

《Python中DataFrame转列表的最全指南》在Python数据分析中,Pandas的DataFrame是最常用的数据结构之一,本文将为你详解5种主流DataFrame转换为列表的方法,大家可以... 目录引言一、基础转换方法解析1. tolist()直接转换法2. values.tolist()矩阵

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

C#中的 Dictionary常用操作

《C#中的Dictionary常用操作》C#中的DictionaryTKey,TValue是用于存储键值对集合的泛型类,允许通过键快速检索值,并且具有唯一键、动态大小和无序集合的特性,常用操作包括添... 目录基本概念Dictionary的基本结构Dictionary的主要特性Dictionary的常用操作

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr