pyspark dataframe数据分析常用算子

2024-06-12 12:38

本文主要是介绍pyspark dataframe数据分析常用算子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

        • 1.createDataFrame,创建dataframe
        • 2.show
        • 3. filter,过滤
        • 4.空值过滤
        • 空值填充
        • 5. groupBy,分组
        • 6.重命名列
        • 7.explode:一列变多行
        • 8.去重
        • 9. when
        • 10.union,合并dataframe
        • 11.like
        • 12.数据保存
        • 13.drop
        • 14.cast:数据类型转换

1.createDataFrame,创建dataframe
df = spark.createDataFrame([(144.5, 185, 33, 'M', 'China'),(167.2, 165, 45, 'M', 'China'),(124.1, 170, 17, 'F', 'Japan'),(144.5, 185, 33, 'M', 'Pakistan'),(156.5, 180, 54, 'F', None),(124.1, 170, 23, 'F', 'Pakistan'),(129.2, 175, 62, 'M', 'Russia'),], ['weight', 'height', 'age', 'gender', 'country'])
2.show
df.show()
默认会把超过20个字符的部分进行截断,如果不想截断,可以进行如下设置
df.show(truncate=False)
3. filter,过滤

(1)单条件过滤

df.filter(df['age'] == 33)
或者
df.filter('age = 33')

(2)多条件过滤

# 'or'
df.filter((df['age'] == 33) | (df['gender'] == 'M'))
# 'and'
df.filter((df['age'] == 33) & (df['gender'] == 'M'))
4.空值过滤
  1. 过滤某一个属性不为空的记录
df.filter("country is not null")
# 或者
df.filter(df["country"].isNotNull())
# 或者
df[df["country"].isNotNull()]

注意:空字符串""并不会被过滤出来
2. 过滤某一个属性为空的记录

df.filter("country is null")
# 或者
df.filter(df["country"].isNull())
空值填充
df.fillna({"country": "China"})
5. groupBy,分组
  1. 分组后统计数量
df.groupBy(df["age"]).count().show()
+---+-----+
|age|count|
+---+-----+
| 54|    1|
| 33|    2|
| 42|    1|
| 23|    2|
| 45|    1|
+---+-----+
6.重命名列
  1. alias
df.select(F.col("country").alias("state"))
  1. withColumnRenamed
df.withColumnRenamed("country", "state")
7.explode:一列变多行
import pyspark.sql.functions as F
from pyspark.sql.types import *
df = spark.createDataFrame([('u1', 'i1', 'r001,r002,r003'),('u2', 'i2', 'r002,r003'),('u3', 'i3', 'r001')], ['user_id', 'item_id', 'recall_id'])

首先基于recall_id这一列新建一列recall_id_lst

df = df\.withColumn("recall_id_lst", F.udf(lambda x: x.split(','), returnType=ArrayType(StringType()))(F.col("recall_id")))
# 结果
+-------+-------+--------------+------------------+
|user_id|item_id|     recall_id|     recall_id_lst|
+-------+-------+--------------+------------------+
|     u1|     i1|r001,r002,r003|[r001, r002, r003]|
|     u2|     i2|     r002,r003|      [r002, r003]|
|     u3|     i3|          r001|            [r001]|
+-------+-------+--------------+------------------+

然后把recall_id_lst这一列变成多行


df.select("user_id", "item_id", F.explode(F.col("recall_id_lst")).alias("recall_id_plat"))
# 结果
+-------+-------+--------------+
|user_id|item_id|recall_id_plat|
+-------+-------+--------------+
|     u1|     i1|          r001|
|     u1|     i1|          r002|
|     u1|     i1|          r003|
|     u2|     i2|          r002|
|     u2|     i2|          r003|
|     u3|     i3|          r001|
+-------+-------+--------------+
8.去重

基于多列去重

df.dropDuplicates(['weight', 'height'])
9. when
df.withColumn("age_range", F.when(df.age > 60, "old").when((df.age > 18) & (df.age <= 60),"mid").otherwise("young"))
10.union,合并dataframe
df.union(df)
11.like
df.filter(df.country.like('%Jap%'))

可用于判断某一列字段是否包含某些字符串

12.数据保存
df.write.mode("overwrite")\.save(path, header=True, format='csv')
13.drop
df = df.drop("age", "gender")
14.cast:数据类型转换
from pyspark.sql.types import FloatType
df = df.withColumn(col, df[col].cast(FloatType()))

后续会不断把常用到的算子整理到博客中~

【参考】:
1.http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html#pyspark.sql.functions

这篇关于pyspark dataframe数据分析常用算子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054237

相关文章

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

MyBatis配置文件中最常用的设置

《MyBatis配置文件中最常用的设置》文章主要介绍了MyBatis配置的优化方法,包括引用外部的properties配置文件、配置外置以实现环境解耦、配置文件中最常用的6个核心设置以及三种常用的Ma... 目录MyBATis配置优化mybatis的配置中引用外部的propertis配置文件⚠️ 注意事项X

SpringBoot整合Apache Spark实现一个简单的数据分析功能

《SpringBoot整合ApacheSpark实现一个简单的数据分析功能》ApacheSpark是一个开源的大数据处理框架,它提供了丰富的功能和API,用于分布式数据处理、数据分析和机器学习等任务... 目录第一步、添加android依赖第二步、编写配置类第三步、编写控制类启动项目并测试总结ApacheS

一文详解Java常用包有哪些

《一文详解Java常用包有哪些》包是Java语言提供的一种确保类名唯一性的机制,是类的一种组织和管理方式、是一组功能相似或相关的类或接口的集合,:本文主要介绍Java常用包有哪些的相关资料,需要的... 目录Java.langjava.utiljava.netjava.iojava.testjava.sql

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

前端Visual Studio Code安装配置教程之下载、汉化、常用组件及基本操作

《前端VisualStudioCode安装配置教程之下载、汉化、常用组件及基本操作》VisualStudioCode是微软推出的一个强大的代码编辑器,功能强大,操作简单便捷,还有着良好的用户界面,... 目录一、Visual Studio Code下载二、汉化三、常用组件1、Auto Rename Tag2

C# 空值处理运算符??、?. 及其它常用符号

《C#空值处理运算符??、?.及其它常用符号》本文主要介绍了C#空值处理运算符??、?.及其它常用符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、核心运算符:直接解决空值问题1.??空合并运算符2.?.空条件运算符二、辅助运算符:扩展空值处理

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal