把COCO数据集的josn标注转变成VOC数据集xml格式的标注;json数据标注转xml数据标注;把coco数据集json格式转变单张图片对应的xml格式

本文主要是介绍把COCO数据集的josn标注转变成VOC数据集xml格式的标注;json数据标注转xml数据标注;把coco数据集json格式转变单张图片对应的xml格式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要是以目标检测为列进行的

COCO数据集json格式样本

{"info": {"description": "COCO 2017 Dataset","url": "http://cocodataset.org","version": "1.0","year": 2017,"contributor": "COCO Consortium","date_created": "2017/09/01"},"licenses": [{"url": "http://creativecommons.org/licenses/by-nc-sa/2.0/","id": 1,"name": "Attribution-NonCommercial-ShareAlike License"}],
"images": [{"license": 4,"file_name": "000000397133.jpg","coco_url": "http://images.cocodataset.org/val2017/000000397133.jpg","height": 427,"width": 640,"date_captured": "2013-11-14 17:02:52","flickr_url": "http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg","id": 397133},{"license": 1,"file_name": "000000037777.jpg","coco_url": "http://images.cocodataset.org/val2017/000000037777.jpg","height": 230,"width": 352,"date_captured": "2013-11-14 20:55:31","flickr_url": "http://farm9.staticflickr.com/8429/7839199426_f6d48aa585_z.jpg","id": 37777}],
"annotations": [{"segmentation":[[510.66,423.01,511.72,420.03,510.45,416.0,510.34,413.02,510.77,410.26,510.77,407.5,510.34,405.16,511.51,402.83,511.41,400.49,510.24,398.16,509.39,397.31,504.61,399.22,502.17,399.64,500.89,401.66,500.47,402.08,499.09,401.87,495.79,401.98,490.59,401.77,488.79,401.77,485.39,398.58,483.9,397.31,481.56,396.35,478.48,395.93,476.68,396.03,475.4,396.77,473.92,398.79,473.28,399.96,473.49,401.87,474.56,403.47,473.07,405.59,473.39,407.71,476.68,409.41,479.23,409.73,481.56,410.69,480.4,411.85,481.35,414.93,479.86,418.65,477.32,420.03,476.04,422.58,479.02,422.58,480.29,423.01,483.79,419.93,486.66,416.21,490.06,415.57,492.18,416.85,491.65,420.24,492.82,422.9,493.56,424.39,496.43,424.6,498.02,423.01,498.13,421.31,497.07,420.03,497.07,415.15,496.33,414.51,501.1,411.96,502.06,411.32,503.02,415.04,503.33,418.12,501.1,420.24,498.98,421.63,500.47,424.39,505.03,423.32,506.2,421.31,507.69,419.5,506.31,423.32,510.03,423.01,510.45,423.01]],"area": 702.1057499999998,"iscrowd": 0,"image_id": 289343,"bbox": [473.07,395.93,38.65,28.67],"category_id": 18,"id": 1768}],"categories": [{"supercategory": "person","id": 1,"name": "person"},{"supercategory": "vehicle","id": 2,"name": "bicycle"},{"supercategory": "vehicle","id": 3,"name": "car"},{"supercategory": "vehicle","id": 4,"name": "motorcycle"},{"supercategory": "vehicle","id": 5,"name": "airplane"},{"supercategory": "vehicle","id": 6,"name": "bus"},{"supercategory": "vehicle","id": 7,"name": "train"},{"supercategory": "vehicle","id": 8,"name": "truck"},{"supercategory": "vehicle","id": 9,"name": "boat"},{"supercategory": "outdoor","id": 10,"name": "traffic light"},{"supercategory": "outdoor","id": 11,"name": "fire hydrant"},{"supercategory": "outdoor","id": 13,"name": "stop sign"},{"supercategory": "outdoor","id": 14,"name": "parking meter"},{"supercategory": "outdoor","id": 15,"name": "bench"},{"supercategory": "animal","id": 16,"name": "bird"},{"supercategory": "animal","id": 17,"name": "cat"},{"supercategory": "animal","id": 18,"name": "dog"},{"supercategory": "animal","id": 19,"name": "horse"},{"supercategory": "animal","id": 20,"name": "sheep"},{"supercategory": "animal","id": 21,"name": "cow"},{"supercategory": "animal","id": 22,"name": "elephant"},{"supercategory": "animal","id": 23,"name": "bear"},{"supercategory": "animal","id": 24,"name": "zebra"},{"supercategory": "animal","id": 25,"name": "giraffe"},{"supercategory": "accessory","id": 27,"name": "backpack"},{"supercategory": "accessory","id": 28,"name": "umbrella"},{"supercategory": "accessory","id": 31,"name": "handbag"},{"supercategory": "accessory","id": 32,"name": "tie"},{"supercategory": "accessory","id": 33,"name": "suitcase"},{"supercategory": "sports","id": 34,"name": "frisbee"},{"supercategory": "sports","id": 35,"name": "skis"},{"supercategory": "sports","id": 36,"name": "snowboard"},{"supercategory": "sports","id": 37,"name": "sports ball"},{"supercategory": "sports","id": 38,"name": "kite"},{"supercategory": "sports","id": 39,"name": "baseball bat"},{"supercategory": "sports","id": 40,"name": "baseball glove"},{"supercategory": "sports","id": 41,"name": "skateboard"},{"supercategory": "sports","id": 42,"name": "surfboard"},{"supercategory": "sports","id": 43,"name": "tennis racket"},{"supercategory": "kitchen","id": 44,"name": "bottle"},{"supercategory": "kitchen","id": 46,"name": "wine glass"},{"supercategory": "kitchen","id": 47,"name": "cup"},{"supercategory": "kitchen","id": 48,"name": "fork"},{"supercategory": "kitchen","id": 49,"name": "knife"},{"supercategory": "kitchen","id": 50,"name": "spoon"},{"supercategory": "kitchen","id": 51,"name": "bowl"},{"supercategory": "food","id": 52,"name": "banana"},{"supercategory": "food","id": 53,"name": "apple"},{"supercategory": "food","id": 54,"name": "sandwich"},{"supercategory": "food","id": 55,"name": "orange"},{"supercategory": "food","id": 56,"name": "broccoli"},{"supercategory": "food","id": 57,"name": "carrot"},{"supercategory": "food","id": 58,"name": "hot dog"},{"supercategory": "food","id": 59,"name": "pizza"},{"supercategory": "food","id": 60,"name": "donut"},{"supercategory": "food","id": 61,"name": "cake"},{"supercategory": "furniture","id": 62,"name": "chair"},{"supercategory": "furniture","id": 63,"name": "couch"},{"supercategory": "furniture","id": 64,"name": "potted plant"},{"supercategory": "furniture","id": 65,"name": "bed"},{"supercategory": "furniture","id": 67,"name": "dining table"},{"supercategory": "furniture","id": 70,"name": "toilet"},{"supercategory": "electronic","id": 72,"name": "tv"},{"supercategory": "electronic","id": 73,"name": "laptop"},{"supercategory": "electronic","id": 74,"name": "mouse"},{"supercategory": "electronic","id": 75,"name": "remote"},{"supercategory": "electronic","id": 76,"name": "keyboard"},{"supercategory": "electronic","id": 77,"name": "cell phone"},{"supercategory": "appliance","id": 78,"name": "microwave"},{"supercategory": "appliance","id": 79,"name": "oven"},{"supercategory": "appliance","id": 80,"name": "toaster"},{"supercategory": "appliance","id": 81,"name": "sink"},{"supercategory": "appliance","id": 82,"name": "refrigerator"},{"supercategory": "indoor","id": 84,"name": "book"},{"supercategory": "indoor","id": 85,"name": "clock"},{"supercategory": "indoor","id": 86,"name": "vase"},{"supercategory": "indoor","id": 87,"name": "scissors"},{"supercategory": "indoor","id": 88,"name": "teddy bear"},{"supercategory": "indoor","id": 89,"name": "hair drier"},{"supercategory": "indoor","id": 90,"name": "toothbrush"}]}

其中
info:可以不关注
images:主要包含一张图片的公共信息,如宽高,图片名,图片id

file_name:图片名称
height:高
width:宽
id:图片的id。在images中是唯一的

annotations:主要包含图像中每一个对象的信息,如标出的对象的边框box,标出对象的类别如人,狗,猫对应的id

image_id:图片id对应上面images中的id,但是这个不是唯一的。因为一张图中可能会标出多个对象。
bbox:是标注对象的边框信息[xmin,ymin,width,height]
category_id:对象类别id,如person对应的id为1

categories:主要的对象类别的信息,如类别名称,类别id(COCO数据集有90个类别),我们只关注id、和name就行

id:类别id,唯一
name:类别名称

VOC数据集的xml格式样本

<?xml version='1.0' encoding='utf-8'?>
<annotation><folder>JPEGImages</folder><filename>PartA_00000.jpg</filename><path>/home/robot11/py-faster-rcnn/data/VOCdevkit2007/VOC2007/JPEGImages/00000.jpg</path><source><database>Unknown</database></source><size><width>1070</width><height>594</height><depth>3</depth></size><segmented>0</segmented><object><name>head</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>64</xmin><ymin>222</ymin><xmax>107</xmax><ymax>271</ymax></bndbox></object>
</annotation>

只要把json转换成上面格式就行。实现代码如下

import os
import json
import cv2
from lxml import etree
import xml.etree.cElementTree as ET
import time
import pandas as pd
from tqdm import tqdm
from xml.dom.minidom import Document
anno = "instances_val2017.json"
xmldir = "train/"
with open(anno, 'r') as load_f:f = json.load(load_f)
df_anno = pd.DataFrame(f['annotations'])
imgs = f['images']
cata={}
def createCate():global catadf_cate = f['categories']for item in df_cate:cata[item['id']]=item['name']def json2xml():global catafor im in imgs:filename = im['file_name']height = im['height']img_id = im['id']width = im['width']doc = Document()annotation = doc.createElement('annotation')doc.appendChild(annotation)filenamedoc = doc.createElement("filename")annotation.appendChild(filenamedoc)filename_txt=doc.createTextNode(filename)filenamedoc.appendChild(filename_txt)size = doc.createElement("size")annotation.appendChild(size)widthdoc = doc.createElement("width")size.appendChild(widthdoc)width_txt = doc.createTextNode(str(width))widthdoc.appendChild(width_txt)heightdoc = doc.createElement("height")size.appendChild(heightdoc)height_txt = doc.createTextNode(str(height))heightdoc.appendChild(height_txt)annos = df_anno[df_anno["image_id"].isin([img_id])]for index, row in annos.iterrows():bbox = row["bbox"]category_id = row["category_id"]cate_name = cata[category_id]object = doc.createElement('object')annotation.appendChild(object)name = doc.createElement('name')object.appendChild(name)name_txt = doc.createTextNode(cate_name)name.appendChild(name_txt)pose = doc.createElement('pose')object.appendChild(pose)pose_txt = doc.createTextNode('Unspecified')pose.appendChild(pose_txt)truncated = doc.createElement('truncated')object.appendChild(truncated)truncated_txt = doc.createTextNode('0')truncated.appendChild(truncated_txt)difficult = doc.createElement('difficult')object.appendChild(difficult)difficult_txt = doc.createTextNode('0')difficult.appendChild(difficult_txt)bndbox = doc.createElement('bndbox')object.appendChild(bndbox)xmin = doc.createElement('xmin')bndbox.appendChild(xmin)xmin_txt = doc.createTextNode(str(int(bbox[0])))xmin.appendChild(xmin_txt)ymin = doc.createElement('ymin')bndbox.appendChild(ymin)ymin_txt = doc.createTextNode(str(int(bbox[1])))ymin.appendChild(ymin_txt)xmax = doc.createElement('xmax')bndbox.appendChild(xmax)xmax_txt = doc.createTextNode(str(int(bbox[0]+bbox[2])))xmax.appendChild(xmax_txt)ymax = doc.createElement('ymax')bndbox.appendChild(ymax)ymax_txt = doc.createTextNode(str(int(bbox[1]+bbox[3])))ymax.appendChild(ymax_txt)xmlpath = os.path.join(xmldir,filename.replace('.jpg','.xml'))f = open(xmlpath, "w")f.write(doc.toprettyxml(indent="  "))f.close()createCate()
json2xml()

去掉COCO数据集中的不需要的检测对象只保留自己想要的对象

import os
import json
import cv2
from lxml import etree
import xml.etree.cElementTree as ET
import time
import pandas as pd
from tqdm import tqdm
from xml.dom.minidom import Document
anno = "instances_val2017.json"
xml_dir = "test/"
# dttm = time.strftime("%Y%m%d%H%M%S", time.localtime())
# if os.path.exists(xml_dir):
#     os.rename(xml_dir,xml_dir+dttm)
# os.mkdir(xml_dir)
import jsonwith open(anno, 'r') as load_f:f = json.load(load_f)
df_anno = pd.DataFrame(f['annotations'])
imgs = f['images']
cata={}
nameList=[ 'bench',  'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',  'banana', 'apple',
'sandwich', 'orange', 'broccoli','carrot', 'hot dog', 'pizza', 'donut', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'book', 'clock', 'vase', 'scissors', 'hair drier',  'toothbrush']
#nameNum={ 'bench':0,  'backpack':0, 'umbrella':0, 'handbag':0, 'tie':0, 'suitcase':0, 'frisbee':0, 'skis':0, 'snowboard':0, 'sports ball':0, 'kite':0, 'baseball bat':0, 'baseball glove':0,
#          'skateboard':0, 'surfboard':0, 'tennis racket':0, 'bottle':0, 'wine glass':0, 'cup':0, 'fork':0, 'knife':0, 'spoon':0, 'bowl':0,  'banana':0, 'apple':0,
#'sandwich':0, 'orange':0, 'broccoli':0,'carrot':0, 'hot dog':0, 'pizza':0, 'donut':0, 'laptop':0, 'mouse':0, 'remote':0, 'keyboard':0, 'cell phone':0, 'book':0, 'clock':0, 'vase':0, 'scissors':0, 'hair drier':0,  'toothbrush':0}
#imageSum=0
flag=0
def createCate():global catadf_cate = f['categories']for item in df_cate:cata[item['id']]=item['name']def json2xml():global cataglobal flag#global imageSumfor im in imgs:#imageSum = imageSum+1flag = 0filename = im['file_name']height = im['height']img_id = im['id']width = im['width']doc = Document()annotation = doc.createElement('annotation')doc.appendChild(annotation)filenamedoc = doc.createElement("filename")annotation.appendChild(filenamedoc)filename_txt=doc.createTextNode(filename)filenamedoc.appendChild(filename_txt)size = doc.createElement("size")annotation.appendChild(size)widthdoc = doc.createElement("width")size.appendChild(widthdoc)width_txt = doc.createTextNode(str(width))widthdoc.appendChild(width_txt)heightdoc = doc.createElement("height")size.appendChild(heightdoc)height_txt = doc.createTextNode(str(height))heightdoc.appendChild(height_txt)annos = df_anno[df_anno["image_id"].isin([img_id])]for index, row in annos.iterrows():bbox = row["bbox"]category_id = row["category_id"]cate_name = cata[category_id]if cate_name not in nameList:print(cate_name+",don`t in namelis")continueflag=1#nameNum[cate_name]=nameNum[cate_name]+1object = doc.createElement('object')annotation.appendChild(object)name = doc.createElement('name')object.appendChild(name)name_txt = doc.createTextNode(cate_name)name.appendChild(name_txt)pose = doc.createElement('pose')object.appendChild(pose)pose_txt = doc.createTextNode('Unspecified')pose.appendChild(pose_txt)truncated = doc.createElement('truncated')object.appendChild(truncated)truncated_txt = doc.createTextNode('0')truncated.appendChild(truncated_txt)difficult = doc.createElement('difficult')object.appendChild(difficult)difficult_txt = doc.createTextNode('0')difficult.appendChild(difficult_txt)bndbox = doc.createElement('bndbox')object.appendChild(bndbox)xmin = doc.createElement('xmin')bndbox.appendChild(xmin)xmin_txt = doc.createTextNode(str(int(bbox[0])))xmin.appendChild(xmin_txt)ymin = doc.createElement('ymin')bndbox.appendChild(ymin)ymin_txt = doc.createTextNode(str(int(bbox[1])))ymin.appendChild(ymin_txt)xmax = doc.createElement('xmax')bndbox.appendChild(xmax)xmax_txt = doc.createTextNode(str(int(bbox[0]+bbox[2])))xmax.appendChild(xmax_txt)ymax = doc.createElement('ymax')bndbox.appendChild(ymax)ymax_txt = doc.createTextNode(str(int(bbox[1]+bbox[3])))ymax.appendChild(ymax_txt)if flag==1:xml_path = os.path.join(xml_dir,filename.replace('.jpg','.xml'))f = open(xml_path, "w")f.write(doc.toprettyxml(indent="  "))f.close()createCate()json2xml()
#print('imagenum:',imageSum)
#print(nameNum)

这篇关于把COCO数据集的josn标注转变成VOC数据集xml格式的标注;json数据标注转xml数据标注;把coco数据集json格式转变单张图片对应的xml格式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053674

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

如何自定义Nginx JSON日志格式配置

《如何自定义NginxJSON日志格式配置》Nginx作为最流行的Web服务器之一,其灵活的日志配置能力允许我们根据需求定制日志格式,本文将详细介绍如何配置Nginx以JSON格式记录访问日志,这种... 目录前言为什么选择jsON格式日志?配置步骤详解1. 安装Nginx服务2. 自定义JSON日志格式各

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

python dict转换成json格式的实现

《pythondict转换成json格式的实现》本文主要介绍了pythondict转换成json格式的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下... 一开始你变成字典格式data = [ { 'a' : 1, 'b' : 2, 'c编程' : 3,

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解