谷歌推出AGREE,增强大模型生成回答准确性

2024-06-12 00:52

本文主要是介绍谷歌推出AGREE,增强大模型生成回答准确性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ChatGPT、Gemini等文本理解、生成方面现出了前所未有的能力,极大地推动了生成式AI的技术创新。但这些模型在实际应用中有时会生成听起来合理,但实际上并不准确的“幻觉”内容,就是一本正经的胡说八道。

为了解决这一难题,谷歌研究院在官网发布了创新框架AGREE,可增强大模型生成内容和引用的准确性。

研究人员在Llama-2-13b等知名大模型进行了实验,结果显示,与现有方法相比,AGREE在提升内容回答准确性和引用性方面非常出色。

论文地址:https://arxiv.org/abs/2311.09533

图片

AGREE的核心技术是通过检索文档中的相关段落来增强大模型生成回答的事实基础,并提供相应的引用。这种方法不仅可以提高回答的准确性,还可以为用户提供验证信息真实性的途径,主要由训练阶段微调和测试时自适应两大块组成。

训练阶段微调

训练阶段微调是AGREE提升大模型自我归因能力的关键模块,在生成每一个回答时都能够提供支持其声明的可靠来源。

首先使用基础的大模型生成一系列回答,作为微调流程的起点。然后,使用了自然语言推理模型(NLI),来评估一个给定的段落是否支持一个特定的声明。在AGREE框架中,NLI模型被用来从未标记的查询中自动构建训练数据集。

图片

构建训练数据的过程包括将基础大模型生成的回答与检索到的文档进行匹配,NLI模型会为每个声明找到最相关的支持性段落,并将其作为引用附加到声明上;如果声明没有找到支持的段落,则被标记为未支持。

图片

在微调阶段,AGREE框架采用了LORA的轻量级微调技术,通过在大模型的权重矩阵上添加低秩更新,来实现高效且针对性的调整,有助于减少计算资源的消耗,同时保持模型的泛化能力。

测试时自适应

测试时自适应是一种动态、迭代的推理增强方法,可帮助大模型在面对新的内容查询时,能够主动地从大型语料库中检索相关信息,并对之前生成的回答进行补充和修正。这种方法与传统的静态回答生成方式不同,它强调的是在测试时不断优化和调整回答,以确保生成的内容尽可能准确和全面。

图片

测试时自适应的工作流程开始于接收到一个新的查询,经过微调的大模型会首先根据其训练阶段学到的知识生成一个初步的回答,然后进入一个自动迭代的过程,大模型会自我评估生成的回答,并识别出其中尚未归因或需要进一步支持的声明。

一旦识别出需要额外信息的声明,测试时自适应就会启动检索过程。这一过程涉及到在预先构建的语料库中搜索与未归因声明相关的段落。

这些段落被选出来后,大模型会尝试将它们与先前的回答结合起来,生成一个更加完善、准确的内容。同时会不断迭代循环,直至达到预定的推理效果或模型认为回答已足够完美为止。

本文素材来源AGREE论文,如有侵权请联系删除

END

图片

图片

这篇关于谷歌推出AGREE,增强大模型生成回答准确性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052738

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D