【ATU Book-i.MX8系列 - TFLite 进阶】 NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测

本文主要是介绍【ATU Book-i.MX8系列 - TFLite 进阶】 NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测

一、概述

在 边缘运算(Edge Computing) 领域中,轻量级的模型扮演着举足轻重的角色。因此,如何在有限硬体资源下实现电脑视觉(Computer vision) 应用是个极具挑战性的课题。特别是在效能与准确度之间寻求平衡。在本节中,我们将深入剖析 深度学习(Deep Learning) 领域中一个备受关注的研究方向 :目标识别(Object Detection)。这应用催生了众多神经网路架构的创新,从VGG-19、ResNet、Inception V4到Mobilenet-SSD,到近年来风头正劲的YOLO系列,都是朝着在改进模型大小,来优化准确度与运行速度效能。

NXP i.MX8M Plus处理器凭借其卓越的处理能力和高效的能源管理,已成为物体检测应用的理想选择之一。该处理器内建的高效AI加速器,即 NPU (Neural Processor Unit) 神经网路处理器,能迅速处理复杂的神经网路运算,使目标识别(Object Detection) 的应用能更加快速和精确。为在 边缘运算(Edge Computing) 设备上进行物体检测的首选方案。

开发平台的第一步就是如何建立 NXP 嵌入式系统的开发环境, 若不懂此技术的读者可以阅读此 【ATU Book - i.MX8系列 - OS】NXP i.MX Linux BSP 开发环境架设 来快速布署恩智浦 NXP i.MX8 系列的开发环境,透过此博文或 ATU 一部小编的系列博文,即可轻松实现任何有关 i.MX8 的环境架设 !! 或是想要更快速进入到 NXP 平台的实作中,可以至官方网站下载官方发行的 Linux 映像档(Image) [链接]。

若新读者欲理解更多人工智能、机器学习以及深度学习的资讯,可点选查阅下方博文:

大大通精彩博文    【ATU Book-i.MX8系列】博文索引

TensorFlow Lite 进阶系列博文-文章架构示意图


TensorFlow Lite 进阶系列博文-文章架构示意图
 


二、算法介绍

由于边缘运算(edge computing) 需以轻量、快速、准确为主,故采用神经网路架构最轻量,且有一定识别能力、运行效率极佳的 MobileNet + SSD 架构。由 轻量化网路架构 MobileNet 与 物件检测算法(Single Shot MultiBox Detector, SSD) 组成之应用。

神经网路架构探讨 :

(1)MobileNet

核心概念是利用拆分的概念,将原本的卷积层拆成 深度卷积(Depthwise Convolution) 与 逐点卷积(Pointwise Convolution) 两个部分,称作 深层可分离卷积(Depthwise Separable Convolution) 。以此方式进行运算,能够大幅度减少参数量,以达到加快运算速度。(用途撷取特征)

MobileNet 轻量化概念示意图

MobileNet 轻量化概念示意图, 参考 LaptrihnX 网站

(2)Single Shot Multi-Box Detector, SSD

核心概念是由 金字塔特征结构(Pyramidal Feature Hierarchy) 与 先验框(Prior boxes) 的概念组成。

金字塔特征结构(Pyramidal Feature Hierarchy) :

采用不同大小的特征图检测物件,比如说大特征图检测小物件、小特征图检测大物件。

先验框(Prior boxes) :

让每个特征图上设置不同尺寸、长宽比的先验框,以作为预测框的基准。这能够帮助训练过程时,提供梯度一定程度的范围限制,能够降低一定程度的训练难度。

如下图所示,金字塔特征结构概念就是在每个不同大小的特征层之中,进行预测来判断是否有物件,并总和每个特征层的结果,找出最大可能性的物件

金字塔特征结构(Pyramidal Feature Hierarchy) 示意图

金字塔特征结构(Pyramidal Feature Hierarchy) 示意图, 参考 ResearchGate 网志

如下图所示,为 VGG-19 搭配 SSD 的神经网路架构(Neural Network)。如同上述金字塔特征结构概念,更明确的呈现 SSD 架构的作法。其实就是在 VGG 每一层的输出都装上 检测器(Detector) 与分类器 (Classifier) ,并将每层结果连结至 Fast NMS 来找最佳的物件检测结果 !!

SSD 架构概念示意图

SSD 架构概念示意图, 参考 Medium 网志

换个方式呈现上述概念。如下图所示,说明 SSD 是检测多个物件视窗来找到最佳方案。

SSD 架构概念示意图 - 2 ,

SSD 架构概念示意图 - 2 , 参考 ITREAD 网志

  

MobileNet SSD 实际架构 ( Netron呈现 ) :

如下图所示,为实际 MobileNet SSD模组架构。从右侧灰色栏位可看出 Input 与 Output 资讯。依设计所代表输入端为彩色影像、输出端依序分别为物件位置、种类、分数、数量等资讯。亦可从架构图上看到在最后每个输出层有延伸出 “Pyramidal Feature Hierarchy 结构” 。

实际 MobileNet SSD模组架构


三、算法实现

Google 官方有提供效果极佳的 mobilenet_object_detector.tflite 模组,即可直接使用,请点选下载。故这里利用迁移学习方法与 TF-Slim实现 TOTORO 物件检测器(Object Detector)。

实现步骤如下:

第一步 : 开启 Colab 设定环境
%tensorflow_version 1.x
!python -c 'import matplotlib as tf; print(tf.__version__)' # Check the version of the tensorflow

由于 colab 已暂停支援 Tensorflow 1.x 的方式,请本机方式实现。

第二步 :  TensorFlow Model Garden 下载与安装
%cd root
!git clone https://github.com/tensorflow/models.git
%cd root/models/research/
!protoc object_detection/protos/*.proto --python_out=. # gernate *.proto
!python setup.py build  # 建置 TensorFlow Model Garden 档案​

第三步 :  TensorFlow  Slim 下载与安装
import os
os.environ['PYTHONPATH'] += ':/root/models/research/:/root/models/research/slim/:/root/models/research/object_detection/utils/:/root/models/research/object_detection'
!pip install tf_slim # 安装 TensorFlow  Slim
!python object_detection/builders/model_builder_test.py   # TensorFlow  Slim 模组建立是否成功测试

 

第四步 : 下载资料库

***常见的物件识别的资料库为 COCO DataSets

%cd /root/models/
!git clone https://github.com/fllay/totoro.git #Download TOTORO

 

第五步 : 数据特征处理

此步骤须将事先把物件的位置特征与分类资讯纪录于 xml 之中,如下图所示。

参考 GitHub 网站

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET# 将 xml 档资料转换成 DataFrame 形式
def xml_to_csv(path):xml_list = []for xml_file in glob.glob(path + '/*.xml'):tree = ET.parse(xml_file)root = tree.getroot()for member in root.findall('object'):value = (root.find('filename').text,int(root.find('size')[0].text),int(root.find('size')[1].text),member[0].text,int(member[4][0].text),int(member[4][1].text),int(member[4][2].text),int(member[4][3].text))xml_list.append(value)column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']xml_df = pd.DataFrame(xml_list, columns=column_name)return xml_df# 将 xml 资料转换成 train_labels.csv 与 test_labels.csv 两个档案
def main():image_path = os.path.join(os.getcwd(), 'totoro/images/train')xml_df = xml_to_csv(image_path)xml_df.to_csv('totoro/data/train_labels.csv', index=None)image_path = os.path.join(os.getcwd(), 'totoro/images/test')xml_df = xml_to_csv(image_path)xml_df.to_csv('totoro/data/test_labels.csv',index=None)main()

第六步 : 制作 TensorFlow Record
%cd /root/models/totoro/tfrecord
!python generate_tfrecord.py --csv_input=/root/models/totoro/data/train_labels.csv \--output_path=train.record --image_dir=/root/models/totoro/images/train
!python generate_tfrecord.py --csv_input=/root/models/totoro/data/test_labels.csv\


--output_path=test.record --image_dir=/root/models/totoro/images/test

 

第七步 : 下载训练过的 MobileNet 模组

此步骤利用之前训练过的模组资源重新训练,即 迁移学习(Transfer Learning) 的技术。

%cd ~/modelsimport shutilimport tarfilefrom requests import getMODEL = 'ssd_mobilenet_v1_coco_2017_11_17'MODEL_FILE = MODEL + '.tar.gz'DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'DEST_DIR = 'pretrained_model'# 下载mobilenet 模组if not (os.path.exists(MODEL_FILE)):with open(MODEL_FILE, "wb") as file:response = get(DOWNLOAD_BASE + MODEL_FILE)file.write(response.content)# 解压缩 mobilenet 模组
tar = tarfile.open(MODEL_FILE)
tar.extractall()
tar.close()
os.remove(MODEL_FILE)
if (os.path.exists(DEST_DIR)):shutil.rmtree(DEST_DIR)
os.rename(MODEL, DEST_DIR)# 移动 mobilenet.config" 资讯
shutil.move( "/root/models/research/object_detection/samples/configs/ssd_mobilenet_v1_coco.config",  "/root/models" )

第八步 : 修改 Config 档案
%cd /root/models/research/
# 编辑Pipeline 资讯
import tensorflow as tf
from google.protobuf import text_format
from object_detection.protos import pipeline_pb2
pipeline = pipeline_pb2.TrainEvalPipelineConfig()                                                       
config_path = '/root/models/ssd_mobilenet_v1_coco.config'
with tf.gfile.GFile( config_path, "r") as f:                                                                                           proto_str = f.read()                                                                                     text_format.Merge(proto_str, pipeline)
pipeline.train_input_reader.tf_record_input_reader.input_path[:] = ['/root/models/totoro/tfrecord/train.record'] # train data
pipeline.train_input_reader.label_map_path = '/root/models/totoro/data/object-detection.pbtxt'
pipeline.eval_input_reader[0].tf_record_input_reader.input_path[:] = ['/root/models/totoro/tfrecord/test.record'] # test data
pipeline.eval_input_reader[0].label_map_path = '/root/models/totoro/data/object-detection.pbtxt' # network
pipeline.train_config.fine_tune_checkpoint = '/root/models/pretrained_model/model.ckpt' # weight
pipeline.train_config.num_steps = 500 # training step
pipeline.model.ssd.num_classes = 2 # classes num
pipeline.eval_config.num_examples = 5 # test image number
config_text = text_format.MessageToString(pipeline)                                                        
with tf.gfile.Open( config_path, "wb") as f:                                                                                           f.write(config_text)

 

第九步 : 进行训练
!python /root/models/research/object_detection/legacy/train.py \--logtostderr \--train_dir=/root/models/trained \--pipeline_config_path=/root/models/ssd_mobilenet_v1_coco.config

*** 训练完成后,将于 models/trained/ 资料夹内产出 model.ckpt-500 档案

 

第十步 : 产生 Frozen Graph

此步骤可以调整模组输出大小,比如说将原本输入大小 224x224 改成 96x96 。

!python /root/models/research/object_detection/export_tflite_ssd_graph.py \--pipeline_config_path=/root/models/ssd_mobilenet_v1_coco.config \--output_directory=/root/models/fine_tuned_model \--trained_checkpoint_prefix=/root/models/trained/model.ckpt-500

*** 训练完成后,将于 models/fine_tuned_model / 资料夹内产出 tflite_graph.pb档案

第十一步 : TensorFlow Lite 转换
# 此处以指令方式进行转换,亦可使用上述文章所介绍代码方式。
! tflite_convert \--output_file=/root/models/fine_tuned_model/ mobilenetssd_uint8.tflite \--graph_def_file=/root/models/fine_tuned_model/tflite_graph.pb \--inference_type=QUANTIZED_UINT8 \--input_arrays=normalized_input_image_tensor \--input_shapes=1,300,300,3 \--output_arrays= 'TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3’ \--default_ranges_min=0 \--default_ranges_max=6 \--mean_values=128 \--std_dev_values=127 \--allow_custom_ops

*** 训练完成后,将于 models/fine_tuned_model / 资料夹内产出 mobilenetssd_uint8.tflite档案

第十二步 : Object Detection 范例实现 ( i.MX8M Plus 撰写运行)

import cv2
import numpy as np
from tflite_runtime.interpreter import Interpreter
# 解析 tensorflow lite 档案
interpreter = Interpreter(model_path='mobilenetssd_uint8.tflite') # 记得将模组移动至 i.MX8 平台
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
width = input_details[0]['shape'][2]
height = input_details[0]['shape'][1]
# 读取测试资料,并设置于解译器中
frame = cv2.imread('/root/models/totoro/images/test/image1.jpg')
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (width, height))
input_data = np.expand_dims(frame_resized, axis=0)
interpreter.set_tensor(input_details[0]['index'], input_data)
# 进行推理
interpreter.invoke()
# 取得输出资料
detection_boxes = interpreter.get_tensor(output_details[0]['index']) # 输出位置资讯
detection_classes = interpreter.get_tensor(output_details[1]['index']) # 输出类别资讯
detection_scores = interpreter.get_tensor(output_details[2]['index']) # 输出分数资讯
num_boxes = interpreter.get_tensor(output_details[3]['index'])
# 标示物件
for i in range(10):if detection_scores[0, i] > .5: # 预测值大于 0.5则显示x = detection_boxes[0, i, [1, 3]] * frame_rgb.shape[1]y = detection_boxes[0, i, [0, 2]] * frame_rgb.shape[0]class_id = detection_classes[0, i]cv2.rectangle(frame_rgb, (x[0], y[0]), (x[1], y[1]), (0, 255, 0), 2)cv2.imshow('TOTORO',frame_rgb)
cv2.waitKey(0)
cv2.destroyAllWindows()

Object Detection 实现结果呈现

如下图所示,成功检测出豆豆龙(物件)。

在 i.MX8M Plus 的 NPU 处理器,推理时间(Inference Time) 约 9 ms

Object Detection 实现结果呈现 成功检测出豆豆龙(物件)。

 

四、结语

物件侦测是目前深度学习的一套基础应用,现在主流的算法架构多数为 YOLO 系列为主,并已发展到第七、八代的模组框架。而 MobileNet-SSD 的架构在准确度略输于 YOLO 架构,但仍是轻量化的速度表现上仍是一个标竿指标。在 i.MX8M Plus 的 NPU(Vivante VIP8000) 运行物件侦测应用,其推理时间可达每秒 8-9 ms 的处理速度,约 125 张 FPS 。此外,搭配本篇做法以及相应的资料库,就能训练出各式各样的物件侦测的应用,像是人脸侦测、手部侦测、水果侦测等等都是以这个概念。 下篇,将结合人脸资料库来实现所谓的 人脸侦测(Face Detection),敬请期待 !! 若对技术移植感兴趣的读者,可以持续关注 ATU 一部小编的系列博文 或是直接联系 ATU 团队 ! 谢谢 !!

五、参考文件

[1] SSD: Single Shot MultiBox Detector

[2] SSD-Tensorflow

[3] Single Shot MultiBox Detector (SSD) 论文阅读

[4] ssd-mobilenet v1 算法结构及程式码介绍

[5] Get models for TensorFlow Lite

[6] totoro example

如有任何相关 TensorFlow Lite 进阶技术问题,欢迎至博文底下留言提问 !!

接下来还会分享更多 TensorFlow Lite 进阶的技术文章 !!敬请期待 ATU Book-i.MX8系列 – TFLite 进阶】 !!

登录大大通,了解更多详情!

ATU Book-i.MX8系列 – TFLite 进阶

这篇关于【ATU Book-i.MX8系列 - TFLite 进阶】 NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051806

相关文章

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换