【ATU Book-i.MX8系列 - TFLite 进阶】 NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测

本文主要是介绍【ATU Book-i.MX8系列 - TFLite 进阶】 NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测

一、概述

在 边缘运算(Edge Computing) 领域中,轻量级的模型扮演着举足轻重的角色。因此,如何在有限硬体资源下实现电脑视觉(Computer vision) 应用是个极具挑战性的课题。特别是在效能与准确度之间寻求平衡。在本节中,我们将深入剖析 深度学习(Deep Learning) 领域中一个备受关注的研究方向 :目标识别(Object Detection)。这应用催生了众多神经网路架构的创新,从VGG-19、ResNet、Inception V4到Mobilenet-SSD,到近年来风头正劲的YOLO系列,都是朝着在改进模型大小,来优化准确度与运行速度效能。

NXP i.MX8M Plus处理器凭借其卓越的处理能力和高效的能源管理,已成为物体检测应用的理想选择之一。该处理器内建的高效AI加速器,即 NPU (Neural Processor Unit) 神经网路处理器,能迅速处理复杂的神经网路运算,使目标识别(Object Detection) 的应用能更加快速和精确。为在 边缘运算(Edge Computing) 设备上进行物体检测的首选方案。

开发平台的第一步就是如何建立 NXP 嵌入式系统的开发环境, 若不懂此技术的读者可以阅读此 【ATU Book - i.MX8系列 - OS】NXP i.MX Linux BSP 开发环境架设 来快速布署恩智浦 NXP i.MX8 系列的开发环境,透过此博文或 ATU 一部小编的系列博文,即可轻松实现任何有关 i.MX8 的环境架设 !! 或是想要更快速进入到 NXP 平台的实作中,可以至官方网站下载官方发行的 Linux 映像档(Image) [链接]。

若新读者欲理解更多人工智能、机器学习以及深度学习的资讯,可点选查阅下方博文:

大大通精彩博文    【ATU Book-i.MX8系列】博文索引

TensorFlow Lite 进阶系列博文-文章架构示意图


TensorFlow Lite 进阶系列博文-文章架构示意图
 


二、算法介绍

由于边缘运算(edge computing) 需以轻量、快速、准确为主,故采用神经网路架构最轻量,且有一定识别能力、运行效率极佳的 MobileNet + SSD 架构。由 轻量化网路架构 MobileNet 与 物件检测算法(Single Shot MultiBox Detector, SSD) 组成之应用。

神经网路架构探讨 :

(1)MobileNet

核心概念是利用拆分的概念,将原本的卷积层拆成 深度卷积(Depthwise Convolution) 与 逐点卷积(Pointwise Convolution) 两个部分,称作 深层可分离卷积(Depthwise Separable Convolution) 。以此方式进行运算,能够大幅度减少参数量,以达到加快运算速度。(用途撷取特征)

MobileNet 轻量化概念示意图

MobileNet 轻量化概念示意图, 参考 LaptrihnX 网站

(2)Single Shot Multi-Box Detector, SSD

核心概念是由 金字塔特征结构(Pyramidal Feature Hierarchy) 与 先验框(Prior boxes) 的概念组成。

金字塔特征结构(Pyramidal Feature Hierarchy) :

采用不同大小的特征图检测物件,比如说大特征图检测小物件、小特征图检测大物件。

先验框(Prior boxes) :

让每个特征图上设置不同尺寸、长宽比的先验框,以作为预测框的基准。这能够帮助训练过程时,提供梯度一定程度的范围限制,能够降低一定程度的训练难度。

如下图所示,金字塔特征结构概念就是在每个不同大小的特征层之中,进行预测来判断是否有物件,并总和每个特征层的结果,找出最大可能性的物件

金字塔特征结构(Pyramidal Feature Hierarchy) 示意图

金字塔特征结构(Pyramidal Feature Hierarchy) 示意图, 参考 ResearchGate 网志

如下图所示,为 VGG-19 搭配 SSD 的神经网路架构(Neural Network)。如同上述金字塔特征结构概念,更明确的呈现 SSD 架构的作法。其实就是在 VGG 每一层的输出都装上 检测器(Detector) 与分类器 (Classifier) ,并将每层结果连结至 Fast NMS 来找最佳的物件检测结果 !!

SSD 架构概念示意图

SSD 架构概念示意图, 参考 Medium 网志

换个方式呈现上述概念。如下图所示,说明 SSD 是检测多个物件视窗来找到最佳方案。

SSD 架构概念示意图 - 2 ,

SSD 架构概念示意图 - 2 , 参考 ITREAD 网志

  

MobileNet SSD 实际架构 ( Netron呈现 ) :

如下图所示,为实际 MobileNet SSD模组架构。从右侧灰色栏位可看出 Input 与 Output 资讯。依设计所代表输入端为彩色影像、输出端依序分别为物件位置、种类、分数、数量等资讯。亦可从架构图上看到在最后每个输出层有延伸出 “Pyramidal Feature Hierarchy 结构” 。

实际 MobileNet SSD模组架构


三、算法实现

Google 官方有提供效果极佳的 mobilenet_object_detector.tflite 模组,即可直接使用,请点选下载。故这里利用迁移学习方法与 TF-Slim实现 TOTORO 物件检测器(Object Detector)。

实现步骤如下:

第一步 : 开启 Colab 设定环境
%tensorflow_version 1.x
!python -c 'import matplotlib as tf; print(tf.__version__)' # Check the version of the tensorflow

由于 colab 已暂停支援 Tensorflow 1.x 的方式,请本机方式实现。

第二步 :  TensorFlow Model Garden 下载与安装
%cd root
!git clone https://github.com/tensorflow/models.git
%cd root/models/research/
!protoc object_detection/protos/*.proto --python_out=. # gernate *.proto
!python setup.py build  # 建置 TensorFlow Model Garden 档案​

第三步 :  TensorFlow  Slim 下载与安装
import os
os.environ['PYTHONPATH'] += ':/root/models/research/:/root/models/research/slim/:/root/models/research/object_detection/utils/:/root/models/research/object_detection'
!pip install tf_slim # 安装 TensorFlow  Slim
!python object_detection/builders/model_builder_test.py   # TensorFlow  Slim 模组建立是否成功测试

 

第四步 : 下载资料库

***常见的物件识别的资料库为 COCO DataSets

%cd /root/models/
!git clone https://github.com/fllay/totoro.git #Download TOTORO

 

第五步 : 数据特征处理

此步骤须将事先把物件的位置特征与分类资讯纪录于 xml 之中,如下图所示。

参考 GitHub 网站

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET# 将 xml 档资料转换成 DataFrame 形式
def xml_to_csv(path):xml_list = []for xml_file in glob.glob(path + '/*.xml'):tree = ET.parse(xml_file)root = tree.getroot()for member in root.findall('object'):value = (root.find('filename').text,int(root.find('size')[0].text),int(root.find('size')[1].text),member[0].text,int(member[4][0].text),int(member[4][1].text),int(member[4][2].text),int(member[4][3].text))xml_list.append(value)column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']xml_df = pd.DataFrame(xml_list, columns=column_name)return xml_df# 将 xml 资料转换成 train_labels.csv 与 test_labels.csv 两个档案
def main():image_path = os.path.join(os.getcwd(), 'totoro/images/train')xml_df = xml_to_csv(image_path)xml_df.to_csv('totoro/data/train_labels.csv', index=None)image_path = os.path.join(os.getcwd(), 'totoro/images/test')xml_df = xml_to_csv(image_path)xml_df.to_csv('totoro/data/test_labels.csv',index=None)main()

第六步 : 制作 TensorFlow Record
%cd /root/models/totoro/tfrecord
!python generate_tfrecord.py --csv_input=/root/models/totoro/data/train_labels.csv \--output_path=train.record --image_dir=/root/models/totoro/images/train
!python generate_tfrecord.py --csv_input=/root/models/totoro/data/test_labels.csv\


--output_path=test.record --image_dir=/root/models/totoro/images/test

 

第七步 : 下载训练过的 MobileNet 模组

此步骤利用之前训练过的模组资源重新训练,即 迁移学习(Transfer Learning) 的技术。

%cd ~/modelsimport shutilimport tarfilefrom requests import getMODEL = 'ssd_mobilenet_v1_coco_2017_11_17'MODEL_FILE = MODEL + '.tar.gz'DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'DEST_DIR = 'pretrained_model'# 下载mobilenet 模组if not (os.path.exists(MODEL_FILE)):with open(MODEL_FILE, "wb") as file:response = get(DOWNLOAD_BASE + MODEL_FILE)file.write(response.content)# 解压缩 mobilenet 模组
tar = tarfile.open(MODEL_FILE)
tar.extractall()
tar.close()
os.remove(MODEL_FILE)
if (os.path.exists(DEST_DIR)):shutil.rmtree(DEST_DIR)
os.rename(MODEL, DEST_DIR)# 移动 mobilenet.config" 资讯
shutil.move( "/root/models/research/object_detection/samples/configs/ssd_mobilenet_v1_coco.config",  "/root/models" )

第八步 : 修改 Config 档案
%cd /root/models/research/
# 编辑Pipeline 资讯
import tensorflow as tf
from google.protobuf import text_format
from object_detection.protos import pipeline_pb2
pipeline = pipeline_pb2.TrainEvalPipelineConfig()                                                       
config_path = '/root/models/ssd_mobilenet_v1_coco.config'
with tf.gfile.GFile( config_path, "r") as f:                                                                                           proto_str = f.read()                                                                                     text_format.Merge(proto_str, pipeline)
pipeline.train_input_reader.tf_record_input_reader.input_path[:] = ['/root/models/totoro/tfrecord/train.record'] # train data
pipeline.train_input_reader.label_map_path = '/root/models/totoro/data/object-detection.pbtxt'
pipeline.eval_input_reader[0].tf_record_input_reader.input_path[:] = ['/root/models/totoro/tfrecord/test.record'] # test data
pipeline.eval_input_reader[0].label_map_path = '/root/models/totoro/data/object-detection.pbtxt' # network
pipeline.train_config.fine_tune_checkpoint = '/root/models/pretrained_model/model.ckpt' # weight
pipeline.train_config.num_steps = 500 # training step
pipeline.model.ssd.num_classes = 2 # classes num
pipeline.eval_config.num_examples = 5 # test image number
config_text = text_format.MessageToString(pipeline)                                                        
with tf.gfile.Open( config_path, "wb") as f:                                                                                           f.write(config_text)

 

第九步 : 进行训练
!python /root/models/research/object_detection/legacy/train.py \--logtostderr \--train_dir=/root/models/trained \--pipeline_config_path=/root/models/ssd_mobilenet_v1_coco.config

*** 训练完成后,将于 models/trained/ 资料夹内产出 model.ckpt-500 档案

 

第十步 : 产生 Frozen Graph

此步骤可以调整模组输出大小,比如说将原本输入大小 224x224 改成 96x96 。

!python /root/models/research/object_detection/export_tflite_ssd_graph.py \--pipeline_config_path=/root/models/ssd_mobilenet_v1_coco.config \--output_directory=/root/models/fine_tuned_model \--trained_checkpoint_prefix=/root/models/trained/model.ckpt-500

*** 训练完成后,将于 models/fine_tuned_model / 资料夹内产出 tflite_graph.pb档案

第十一步 : TensorFlow Lite 转换
# 此处以指令方式进行转换,亦可使用上述文章所介绍代码方式。
! tflite_convert \--output_file=/root/models/fine_tuned_model/ mobilenetssd_uint8.tflite \--graph_def_file=/root/models/fine_tuned_model/tflite_graph.pb \--inference_type=QUANTIZED_UINT8 \--input_arrays=normalized_input_image_tensor \--input_shapes=1,300,300,3 \--output_arrays= 'TFLite_Detection_PostProcess','TFLite_Detection_PostProcess:1','TFLite_Detection_PostProcess:2','TFLite_Detection_PostProcess:3’ \--default_ranges_min=0 \--default_ranges_max=6 \--mean_values=128 \--std_dev_values=127 \--allow_custom_ops

*** 训练完成后,将于 models/fine_tuned_model / 资料夹内产出 mobilenetssd_uint8.tflite档案

第十二步 : Object Detection 范例实现 ( i.MX8M Plus 撰写运行)

import cv2
import numpy as np
from tflite_runtime.interpreter import Interpreter
# 解析 tensorflow lite 档案
interpreter = Interpreter(model_path='mobilenetssd_uint8.tflite') # 记得将模组移动至 i.MX8 平台
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
width = input_details[0]['shape'][2]
height = input_details[0]['shape'][1]
# 读取测试资料,并设置于解译器中
frame = cv2.imread('/root/models/totoro/images/test/image1.jpg')
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb, (width, height))
input_data = np.expand_dims(frame_resized, axis=0)
interpreter.set_tensor(input_details[0]['index'], input_data)
# 进行推理
interpreter.invoke()
# 取得输出资料
detection_boxes = interpreter.get_tensor(output_details[0]['index']) # 输出位置资讯
detection_classes = interpreter.get_tensor(output_details[1]['index']) # 输出类别资讯
detection_scores = interpreter.get_tensor(output_details[2]['index']) # 输出分数资讯
num_boxes = interpreter.get_tensor(output_details[3]['index'])
# 标示物件
for i in range(10):if detection_scores[0, i] > .5: # 预测值大于 0.5则显示x = detection_boxes[0, i, [1, 3]] * frame_rgb.shape[1]y = detection_boxes[0, i, [0, 2]] * frame_rgb.shape[0]class_id = detection_classes[0, i]cv2.rectangle(frame_rgb, (x[0], y[0]), (x[1], y[1]), (0, 255, 0), 2)cv2.imshow('TOTORO',frame_rgb)
cv2.waitKey(0)
cv2.destroyAllWindows()

Object Detection 实现结果呈现

如下图所示,成功检测出豆豆龙(物件)。

在 i.MX8M Plus 的 NPU 处理器,推理时间(Inference Time) 约 9 ms

Object Detection 实现结果呈现 成功检测出豆豆龙(物件)。

 

四、结语

物件侦测是目前深度学习的一套基础应用,现在主流的算法架构多数为 YOLO 系列为主,并已发展到第七、八代的模组框架。而 MobileNet-SSD 的架构在准确度略输于 YOLO 架构,但仍是轻量化的速度表现上仍是一个标竿指标。在 i.MX8M Plus 的 NPU(Vivante VIP8000) 运行物件侦测应用,其推理时间可达每秒 8-9 ms 的处理速度,约 125 张 FPS 。此外,搭配本篇做法以及相应的资料库,就能训练出各式各样的物件侦测的应用,像是人脸侦测、手部侦测、水果侦测等等都是以这个概念。 下篇,将结合人脸资料库来实现所谓的 人脸侦测(Face Detection),敬请期待 !! 若对技术移植感兴趣的读者,可以持续关注 ATU 一部小编的系列博文 或是直接联系 ATU 团队 ! 谢谢 !!

五、参考文件

[1] SSD: Single Shot MultiBox Detector

[2] SSD-Tensorflow

[3] Single Shot MultiBox Detector (SSD) 论文阅读

[4] ssd-mobilenet v1 算法结构及程式码介绍

[5] Get models for TensorFlow Lite

[6] totoro example

如有任何相关 TensorFlow Lite 进阶技术问题,欢迎至博文底下留言提问 !!

接下来还会分享更多 TensorFlow Lite 进阶的技术文章 !!敬请期待 ATU Book-i.MX8系列 – TFLite 进阶】 !!

登录大大通,了解更多详情!

ATU Book-i.MX8系列 – TFLite 进阶

这篇关于【ATU Book-i.MX8系列 - TFLite 进阶】 NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051806

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景