python实现无人机航拍图片像素坐标转世界坐标

2024-06-11 15:44

本文主要是介绍python实现无人机航拍图片像素坐标转世界坐标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

已知相机参数(传感器宽度和高度、图像宽度和高度、焦距、相对航高、像主点坐标 ),在给定像素坐标的前提下,求世界坐标,大部分通过AI来实现,不知道哪个步骤有问题,望大家指正

脚本

import numpy as np
import cv2# 畸变校正
def undistort_pixel(pixel_x, pixel_y, sym_dist, dec_dist):k0,k1,k2,k3=sym_dist# k1, k2, p1, p2, k3 = sym_distp1,p2,p3=dec_distfx = focal_length_mmfy = focal_length_mmcx = image_width_px / 2cy = image_height_px / 2distCoeffs = np.array([k1, k2, p1, p2,k3])cameraMatrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])distorted_points = np.array([[pixel_x, pixel_y]], dtype=np.float32)undistorted_points = cv2.undistortPoints(distorted_points, cameraMatrix, distCoeffs)#################################################### 4\对图像去畸变img = cv2.imread('./images/100_0004_0001.JPG')img_undistored = cv2.undistort(img, cameraMatrix, distCoeffs)cv2.imwrite('./images/100_0004_00011.JPG', img_undistored)return undistorted_points[0][0][0], undistorted_points[0][0][1]# 相机坐标转世界坐标
def camera_to_world_coordinates(cam_coords, pos):# 获取相机到世界的转换参数pos_x, pos_y, pos_z, roll, pitch, yaw = pos# 将角度转换为弧度roll = np.radians(roll)pitch = np.radians(pitch)yaw = np.radians(yaw)# 计算旋转矩阵R_roll = np.array([[1, 0, 0],[0, np.cos(roll), -np.sin(roll)],[0, np.sin(roll), np.cos(roll)]])R_pitch = np.array([[np.cos(pitch), 0, np.sin(pitch)],[0, 1, 0],[-np.sin(pitch), 0, np.cos(pitch)]])R_yaw = np.array([[np.cos(yaw), -np.sin(yaw), 0],[np.sin(yaw), np.cos(yaw), 0],[0, 0, 1]])R = R_yaw @ R_pitch @ R_roll# 相机坐标转换到世界坐标cam_coords_homogeneous = np.array([cam_coords[0], cam_coords[1], -H, 1])world_coords = R @ cam_coords_homogeneous[:3] + np.array([pos_x, pos_y, pos_z])return world_coords
####################################################基本参数
# 传感器宽度和高度(毫米)
sensor_width_mm = 12.83331744000000007588
sensor_height_mm = 8.55554496000000064271# 图像宽度和高度(像素)
image_width_px = 5472
image_height_px = 3648# 焦距(毫米)
focal_length_mm = 8.69244671863242679422# 焦距(米)
focal_length_m = 8.69244671863242679422/1000# 相对航高
H=86.93#################################################### 1\计算空间分辨率
# 传感器尺寸转换为米
sensor_width_m = sensor_width_mm / 1000
sensor_height_m = sensor_height_mm / 1000# 计算水平和垂直的 GSD
GSD_x = sensor_width_m * H / (focal_length_m * image_width_px)
GSD_y = sensor_height_m * H / (focal_length_m * image_height_px)# 水平和垂直方向的 GSD
print("水平方向的 GSD:", GSD_x, "米/像素")
print("垂直方向的 GSD:", GSD_y, "米/像素")#################################################### 2\给定像素坐标,计算相机坐标
#像主点偏移 
xpoff_px=20.88973563438230485190
ypoff_px=50.51977022866981315019# 像素坐标
pixel_x = image_width_px
pixel_y = image_height_px
# pixel_x = image_width_px/2
# pixel_y = image_height_px/2
# pixel_x = 0
# pixel_y = 0pixel_x=pixel_x+xpoff_px
pixel_y=pixel_y+ypoff_px# 计算相机坐标(假设无畸变)
camera_x = pixel_x * GSD_x
camera_y = pixel_y * GSD_yprint("像素坐标 (", pixel_x, ",", pixel_y, ") 对应的相机坐标 (x, y): (", camera_x, "米, ", camera_y, "米)")#################################################### 3\计算畸变后坐标
# 对称畸变系数
sym_dist = [0, -0.00043396118129128110, 0.00000262222711982075, -0.00000001047488706013]
# 径向畸变
dec_dist = [0.00000205885592671873, -0.00000321714140091248, 0]# 进行畸变校正
undistorted_camera_x, undistorted_camera_y = undistort_pixel(pixel_x, pixel_y, sym_dist, dec_dist)print("畸变校正后像素坐标 (", pixel_x, ",", pixel_y, ") 对应的相机坐标 (x, y): (", undistorted_camera_x, "米, ", undistorted_camera_y, "米)")#################################################### 4\计算世界坐标
# POS数据
pos = [433452.054688, 2881728.519704, 183.789696, 0.648220, -0.226028, 14.490357]# 计算世界坐标
world_coords = camera_to_world_coordinates((undistorted_camera_x, undistorted_camera_y), pos)print("旋转平移变换后像素坐标 (", pixel_x, ",", pixel_y, ") 对应的世界坐标 (x, y): (", world_coords[0], "米, ", world_coords[1], "米)")

这篇关于python实现无人机航拍图片像素坐标转世界坐标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051598

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss