[deeplearning-014] 深度学习的模型结构历史

2024-06-11 09:18

本文主要是介绍[deeplearning-014] 深度学习的模型结构历史,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[0] 参考文献
http://www.cnblogs.com/skyfsm/p/8451834.html
https://www.cnblogs.com/52machinelearning/p/5821591.html

[1]Q:什么是深度学习? 
A:隐层数量多的神经网络,隐层从5~1000不等。

[2]Q:深度学习的网络模型有哪些种类?
A:图像处理的卷积神经网络CNN; 自然语言处理的循环神经网络RNN; 深度信念网络DBN。

[3]卷积神经网络的历史
  [3.1] LeNet-5,1998,《Gradient-based learning applied to document recognition》
    5层网络。卷积层。池化层。
-----
#LeNet的Keras实现
def LeNet():
    model = Sequential()
    model.add(Conv2D(32,(5,5),strides=(1,1),input_shape=(28,28,1),padding='valid',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    model.add(Conv2D(64,(5,5),strides=(1,1),padding='valid',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    model.add(Flatten())
    model.add(Dense(100,activation='relu'))
    model.add(Dense(10,activation='softmax'))
    return model
-----
  [3.2] AlexNet,2012,《ImageNet Classification with Deep Convolutional Neural Networks》
    数据增强:水平翻转; 随机裁剪; 平移变换;颜色光照变换。
    训练策略:Dropout抗 过拟合; ReLU激活函数; LRN局部响应数据归一化; Overlapping Pooling重叠池化; 多GPU并行。
    ReLU函数:ReLU本质上是分段线性模型,前向计算非常简单,无需指数之类操作;ReLU的偏导也很简单,反向传播梯度,无需指数或者除法之类操作;
ReLU不容易发生梯度发散问题,Tanh和Logistic激活函数在两端的时候导数容易趋近于零,多级连乘后梯度更加约等于0;ReLU关闭了右边,从而会使得很多的隐层输出为0,即网络变得稀疏,起到了类似L1的正则化作用,可以在一定程度上缓解过拟合。
-----
AlexNet的Keras实现
def AlexNet():
    model = Sequential()
    model.add(Conv2D(96,(11,11),strides=(4,4),input_shape=(227,227,3),padding='valid',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Conv2D(256,(5,5),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Flatten())
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000,activation='softmax'))
    return model
-----
  [3.3] ZFNet, 2014,《Visualizing and Understanding Convolutional Networks》
    反卷积可视化特征图,证明浅层网络学习到图像边缘、颜色、纹理,高层网络学习到图像的抽象特征。由此优化卷积核尺寸特征。
    遮挡试验判断关键区域。
    证明更深的网络具有更好的性能。
-----
#ZF-Net的Keras实现
def ZF_Net():
    model = Sequential()  
    model.add(Conv2D(96,(7,7),strides=(2,2),input_shape=(224,224,3),padding='valid',activation='relu',kernel_initializer='uniform'))  
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))  
    model.add(Conv2D(256,(5,5),strides=(2,2),padding='same',activation='relu',kernel_initializer='uniform'))  
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))  
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))  
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))  
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))  
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))  
    model.add(Flatten())  
    model.add(Dense(4096,activation='relu'))  
    model.add(Dropout(0.5))  
    model.add(Dense(4096,activation='relu'))  
    model.add(Dropout(0.5))  
    model.add(Dense(1000,activation='softmax'))  
    return model
-----
  [3.4] VGGNet, 2014, 《Very Deep Convolutional Networks for Large-Scale Visual Recognition》
    反复堆叠33的卷积层和22的池化层,多尺度数据增强。
-----
#VGG-16的Keras实现
def VGG_16():   
    model = Sequential()
   
    model.add(Conv2D(64,(3,3),strides=(1,1),input_shape=(224,224,3),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(64,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    
    model.add(Conv2D(128,(3,2),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(128,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    
    model.add(Flatten())
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000,activation='softmax'))
    
    return model
-----
  [3.5] GoogleNet, 2014, 《Going deeper with convolutions》
    卷积层后增加多层感知机。
    全局平均池化代替全连接层。
    网中网NIN结构。
-----
#GoogLeNet的Keras实现
def Conv2d_BN(x, nb_filter,kernel_size, padding='same',strides=(1,1),name=None):
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None

    x = Conv2D(nb_filter,kernel_size,padding=padding,strides=strides,activation='relu',name=conv_name)(x)
    x = BatchNormalization(axis=3,name=bn_name)(x)
    return x

def Inception(x,nb_filter):
    branch1x1 = Conv2d_BN(x,nb_filter,(1,1), padding='same',strides=(1,1),name=None)

    branch3x3 = Conv2d_BN(x,nb_filter,(1,1), padding='same',strides=(1,1),name=None)
    branch3x3 = Conv2d_BN(branch3x3,nb_filter,(3,3), padding='same',strides=(1,1),name=None)

    branch5x5 = Conv2d_BN(x,nb_filter,(1,1), padding='same',strides=(1,1),name=None)
    branch5x5 = Conv2d_BN(branch5x5,nb_filter,(1,1), padding='same',strides=(1,1),name=None)

    branchpool = MaxPooling2D(pool_size=(3,3),strides=(1,1),padding='same')(x)
    branchpool = Conv2d_BN(branchpool,nb_filter,(1,1),padding='same',strides=(1,1),name=None)

    x = concatenate([branch1x1,branch3x3,branch5x5,branchpool],axis=3)

    return x

def GoogLeNet():
    inpt = Input(shape=(224,224,3))
    #padding = 'same',填充为(步长-1)/2,还可以用ZeroPadding2D((3,3))
    x = Conv2d_BN(inpt,64,(7,7),strides=(2,2),padding='same')
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    x = Conv2d_BN(x,192,(3,3),strides=(1,1),padding='same')
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    x = Inception(x,64)#256
    x = Inception(x,120)#480
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    x = Inception(x,128)#512
    x = Inception(x,128)
    x = Inception(x,128)
    x = Inception(x,132)#528
    x = Inception(x,208)#832
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    x = Inception(x,208)
    x = Inception(x,256)#1024
    x = AveragePooling2D(pool_size=(7,7),strides=(7,7),padding='same')(x)
    x = Dropout(0.4)(x)
    x = Dense(1000,activation='relu')(x)
    x = Dense(1000,activation='softmax')(x)
    model = Model(inpt,x,name='inception')
    return model
-----
  [3.6] ResNet, 2015,《Deep Residual Learning for Image Recognition》
    shortcut连接,将前一层输出跳过若干层,连接到后面的层。
-----
#ResNet-50的Keras实现
def Conv2d_BN(x, nb_filter,kernel_size, strides=(1,1), padding='same',name=None):
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None

    x = Conv2D(nb_filter,kernel_size,padding=padding,strides=strides,activation='relu',name=conv_name)(x)
    x = BatchNormalization(axis=3,name=bn_name)(x)
    return x

def Conv_Block(inpt,nb_filter,kernel_size,strides=(1,1), with_conv_shortcut=False):
    x = Conv2d_BN(inpt,nb_filter=nb_filter[0],kernel_size=(1,1),strides=strides,padding='same')
    x = Conv2d_BN(x, nb_filter=nb_filter[1], kernel_size=(3,3), padding='same')
    x = Conv2d_BN(x, nb_filter=nb_filter[2], kernel_size=(1,1), padding='same')
    if with_conv_shortcut:
        shortcut = Conv2d_BN(inpt,nb_filter=nb_filter[2],strides=strides,kernel_size=kernel_size)
        x = add([x,shortcut])
        return x
    else:
        x = add([x,inpt])
        return x

def ResNet50():
    inpt = Input(shape=(224,224,3))
    x = ZeroPadding2D((3,3))(inpt)
    x = Conv2d_BN(x,nb_filter=64,kernel_size=(7,7),strides=(2,2),padding='valid')
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    
    x = Conv_Block(x,nb_filter=[64,64,256],kernel_size=(3,3),strides=(1,1),with_conv_shortcut=True)
    x = Conv_Block(x,nb_filter=[64,64,256],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[64,64,256],kernel_size=(3,3))
    
    x = Conv_Block(x,nb_filter=[128,128,512],kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
    x = Conv_Block(x,nb_filter=[128,128,512],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[128,128,512],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[128,128,512],kernel_size=(3,3))
    
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    
    x = Conv_Block(x,nb_filter=[512,512,2048],kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
    x = Conv_Block(x,nb_filter=[512,512,2048],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[512,512,2048],kernel_size=(3,3))
    x = AveragePooling2D(pool_size=(7,7))(x)
    x = Flatten()(x)
    x = Dense(1000,activation='softmax')(x)
    
    model = Model(inputs=inpt,outputs=x)
    return model
-----
  [3.7] DenseNet, 2017,《Densely Connected Convolutional Networks》 
    shortcut connections将所有的层互相连接起来。在这个新架构中,每一层的输入都包含了所有较早的层的feature maps,而且它的输出被传递至每个后续层。这些feature maps通过depth concatenation在一起。DenseNet是迄今为止效果最好的网络。
-----
#DenseNet-121的Keras实现
def DenseNet121(nb_dense_block=4, growth_rate=32, nb_filter=64, reduction=0.0, dropout_rate=0.0, weight_decay=1e-4, classes=1000, weights_path=None):
    '''Instantiate the DenseNet 121 architecture,
        # Arguments
            nb_dense_block: number of dense blocks to add to end
            growth_rate: number of filters to add per dense block
            nb_filter: initial number of filters
            reduction: reduction factor of transition blocks.
            dropout_rate: dropout rate
            weight_decay: weight decay factor
            classes: optional number of classes to classify images
            weights_path: path to pre-trained weights
        # Returns
            A Keras model instance.
    '''
    eps = 1.1e-5

    # compute compression factor
    compression = 1.0 - reduction

    # Handle Dimension Ordering for different backends
    global concat_axis
    if K.image_dim_ordering() == 'tf':
      concat_axis = 3
      img_input = Input(shape=(224, 224, 3), name='data')
    else:
      concat_axis = 1
      img_input = Input(shape=(3, 224, 224), name='data')

    # From architecture for ImageNet (Table 1 in the paper)
    nb_filter = 64
    nb_layers = [6,12,24,16] # For DenseNet-121

    # Initial convolution
    x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input)
    x = Convolution2D(nb_filter, 7, 7, subsample=(2, 2), name='conv1', bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv1_bn')(x)
    x = Scale(axis=concat_axis, name='conv1_scale')(x)
    x = Activation('relu', name='relu1')(x)
    x = ZeroPadding2D((1, 1), name='pool1_zeropadding')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x)

    # Add dense blocks
    for block_idx in range(nb_dense_block - 1):
        stage = block_idx+2
        x, nb_filter = dense_block(x, stage, nb_layers[block_idx], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay)

        # Add transition_block
        x = transition_block(x, stage, nb_filter, compression=compression, dropout_rate=dropout_rate, weight_decay=weight_decay)
        nb_filter = int(nb_filter * compression)

    final_stage = stage + 1
    x, nb_filter = dense_block(x, final_stage, nb_layers[-1], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay)

    x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv'+str(final_stage)+'_blk_bn')(x)
    x = Scale(axis=concat_axis, name='conv'+str(final_stage)+'_blk_scale')(x)
    x = Activation('relu', name='relu'+str(final_stage)+'_blk')(x)
    x = GlobalAveragePooling2D(name='pool'+str(final_stage))(x)

    x = Dense(classes, name='fc6')(x)
    x = Activation('softmax', name='prob')(x)

    model = Model(img_input, x, name='densenet')

    if weights_path is not None:
      model.load_weights(weights_path)

    return model


def conv_block(x, stage, branch, nb_filter, dropout_rate=None, weight_decay=1e-4):
    '''Apply BatchNorm, Relu, bottleneck 1x1 Conv2D, 3x3 Conv2D, and option dropout
        # Arguments
            x: input tensor 
            stage: index for dense block
            branch: layer index within each dense block
            nb_filter: number of filters
            dropout_rate: dropout rate
            weight_decay: weight decay factor
    '''
    eps = 1.1e-5
    conv_name_base = 'conv' + str(stage) + '_' + str(branch)
    relu_name_base = 'relu' + str(stage) + '_' + str(branch)

    # 1x1 Convolution (Bottleneck layer)
    inter_channel = nb_filter * 4  
    x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_x1_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base+'_x1_scale')(x)
    x = Activation('relu', name=relu_name_base+'_x1')(x)
    x = Convolution2D(inter_channel, 1, 1, name=conv_name_base+'_x1', bias=False)(x)

    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    # 3x3 Convolution
    x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_x2_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base+'_x2_scale')(x)
    x = Activation('relu', name=relu_name_base+'_x2')(x)
    x = ZeroPadding2D((1, 1), name=conv_name_base+'_x2_zeropadding')(x)
    x = Convolution2D(nb_filter, 3, 3, name=conv_name_base+'_x2', bias=False)(x)

    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    return x


def transition_block(x, stage, nb_filter, compression=1.0, dropout_rate=None, weight_decay=1E-4):
    ''' Apply BatchNorm, 1x1 Convolution, averagePooling, optional compression, dropout 
        # Arguments
            x: input tensor
            stage: index for dense block
            nb_filter: number of filters
            compression: calculated as 1 - reduction. Reduces the number of feature maps in the transition block.
            dropout_rate: dropout rate
            weight_decay: weight decay factor
    '''

    eps = 1.1e-5
    conv_name_base = 'conv' + str(stage) + '_blk'
    relu_name_base = 'relu' + str(stage) + '_blk'
    pool_name_base = 'pool' + str(stage) 

    x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base+'_scale')(x)
    x = Activation('relu', name=relu_name_base)(x)
    x = Convolution2D(int(nb_filter * compression), 1, 1, name=conv_name_base, bias=False)(x)

    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    x = AveragePooling2D((2, 2), strides=(2, 2), name=pool_name_base)(x)

    return x


def dense_block(x, stage, nb_layers, nb_filter, growth_rate, dropout_rate=None, weight_decay=1e-4, grow_nb_filters=True):
    ''' Build a dense_block where the output of each conv_block is fed to subsequent ones
        # Arguments
            x: input tensor
            stage: index for dense block
            nb_layers: the number of layers of conv_block to append to the model.
            nb_filter: number of filters
            growth_rate: growth rate
            dropout_rate: dropout rate
            weight_decay: weight decay factor
            grow_nb_filters: flag to decide to allow number of filters to grow
    '''

    eps = 1.1e-5
    concat_feat = x

    for i in range(nb_layers):
        branch = i+1
        x = conv_block(concat_feat, stage, branch, growth_rate, dropout_rate, weight_decay)
        concat_feat = merge([concat_feat, x], mode='concat', concat_axis=concat_axis, name='concat_'+str(stage)+'_'+str(branch))

        if grow_nb_filters:
            nb_filter += growth_rate

    return concat_feat, nb_filter
-----


[4] RNN的历史
  [4.1] 参考文献
    https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/ "Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN)",
    http://karpathy.github.io/2015/05/21/rnn-effectiveness/
    https://blog.csdn.net/mmc2015/article/details/54848220
    https://www.jianshu.com/p/9dc9f41f0b29  RNN基础介绍,这篇很好
    http://karpathy.github.io/2015/05/21/rnn-effectiveness/  rnn的成功领域
    http://colah.github.io/posts/2015-08-Understanding-LSTMs/  里面对LSTM结构为什么这样设计,做了一步步的推理解释,非常的详细。
    http://deeplearning.net/tutorial/lstm.html#lstm
    https://github.com/pangolulu/rnn-from-scratch  从零实现rnn
    https://link.zhihu.com/?target=http%3A//cs224d.stanford.edu/lecture_notes/notes4.pdf
    https://blog.csdn.net/kymowind/article/details/75145775
    http://www.docin.com/p-704741266.html
    udacity的lstm和rnn

  [4.2]
    《A Critical Review of Recurrent Neural Networks for Sequence Learning》
    《LSTM: A Search Space Odyssey》 通过从新进行各种实验来对比考查LSTM的各种改进(组件)的效果。  
    于LSTM的RNN架构上的变化有最先的BRNN(双向)
    《A Hierarchical Neural Autoencoder for Paragraphs and Documents》,使用不同的LSTM分别处理词、句子和段落级别输入,并使用自动编码器(autoencoder)来检测LSTM的文档特征抽取和重建能力。
    《Learning to execute》使用基于LSTM的深度模型用于读懂python程序并且给出正确的程序输出。
    《Supervised Sequence Labelling with Recurrent Neural Networks》,这篇论文里有比较详细的公式推导,但是对于LSTM的结构却讲的比较混乱,所以不建议入门就看这篇论文。
    《A tutorial on training recurrent neural networks》RNN的训练方法
    《A Guide to Recurrent Neural Networks and Backpropagation》

这篇关于[deeplearning-014] 深度学习的模型结构历史的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050760

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss