Hive分析窗口函数(四) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

2024-06-11 05:32

本文主要是介绍Hive分析窗口函数(四) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GROUPING SETS,GROUPING__ID,CUBE,ROLLUP
这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

数据准备:

CREATE EXTERNAL TABLE lxw1234 (
month STRING,
day STRING, 
cookieid STRING 
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile location '/tmp/lxw11/';hive> select * from lxw1234;
OK
2015-03 2015-03-10      cookie1
2015-03 2015-03-10      cookie5
2015-03 2015-03-12      cookie7
2015-04 2015-04-12      cookie3
2015-04 2015-04-13      cookie2
2015-04 2015-04-13      cookie4
2015-04 2015-04-16      cookie4
2015-03 2015-03-10      cookie2
2015-03 2015-03-10      cookie3
2015-04 2015-04-12      cookie5
2015-04 2015-04-13      cookie6
2015-04 2015-04-15      cookie3
2015-04 2015-04-15      cookie2
2015-04 2015-04-16      cookie1

GROUPING SETS

在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

CREATE EXTERNAL TABLE lxw1234 (
month STRING,
day STRING, 
cookieid STRING 
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
stored as textfile location '/tmp/lxw11/';hive> select * from lxw1234;
OK
2015-03 2015-03-10      cookie1
2015-03 2015-03-10      cookie5
2015-03 2015-03-12      cookie7
2015-04 2015-04-12      cookie3
2015-04 2015-04-13      cookie2
2015-04 2015-04-13      cookie4
2015-04 2015-04-16      cookie4
2015-03 2015-03-10      cookie2
2015-03 2015-03-10      cookie3
2015-04 2015-04-12      cookie5
2015-04 2015-04-13      cookie6
2015-04 2015-04-15      cookie3
2015-04 2015-04-15      cookie2
2015-04 2015-04-16      cookie1

等价于 

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day

再如:

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
GROUPING SETS (month,day,(month,day)) 
ORDER BY GROUPING__ID;month         day             uv      GROUPING__ID
------------------------------------------------
2015-03       NULL            5       1
2015-04       NULL            6       1
NULL          2015-03-10      4       2
NULL          2015-03-12      1       2
NULL          2015-04-12      2       2
NULL          2015-04-13      3       2
NULL          2015-04-15      2       2
NULL          2015-04-16      2       2
2015-03       2015-03-10      4       3
2015-03       2015-03-12      1       3
2015-04       2015-04-12      2       3
2015-04       2015-04-13      3       3
2015-04       2015-04-15      2       3
2015-04       2015-04-16      2       3

等价于

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

其中的 GROUPING__ID,表示结果属于哪一个分组集合。

CUBE

根据GROUP BY的维度的所有组合进行聚合。

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM lxw1234 
GROUP BY month,day 
WITH CUBE 
ORDER BY GROUPING__ID;month                              day             uv     GROUPING__ID
--------------------------------------------
NULL            NULL            7       0
2015-03         NULL            5       1
2015-04         NULL            6       1
NULL            2015-04-12      2       2
NULL            2015-04-13      3       2
NULL            2015-04-15      2       2
NULL            2015-04-16      2       2
NULL            2015-03-10      4       2
NULL            2015-03-12      1       2
2015-03         2015-03-10      4       3
2015-03         2015-03-12      1       3
2015-04         2015-04-16      2       3
2015-04         2015-04-12      2       3
2015-04         2015-04-13      3       3
2015-04         2015-04-15      2       3

等价于

SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM lxw1234
UNION ALL 
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day

ROLLUP

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
比如,以month维度进行层级聚合:

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM lxw1234 
GROUP BY month,day
WITH ROLLUP 
ORDER BY GROUPING__ID;month                              day             uv     GROUPING__ID
---------------------------------------------------
NULL             NULL            7       0
2015-03          NULL            5       1
2015-04          NULL            6       1
2015-03          2015-03-10      4       3
2015-03          2015-03-12      1       3
2015-04          2015-04-12      2       3
2015-04          2015-04-13      3       3
2015-04          2015-04-15      2       3
2015-04          2015-04-16      2       3

可以实现这样的上钻过程:
月天的UV->月的UV->总UV

--把month和day调换顺序,则以day维度进行层级聚合:

SELECT 
day,
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM lxw1234 
GROUP BY day,month 
WITH ROLLUP 
ORDER BY GROUPING__ID;day             month              uv     GROUPING__ID
-------------------------------------------------------
NULL            NULL               7       0
2015-04-13      NULL               3       1
2015-03-12      NULL               1       1
2015-04-15      NULL               2       1
2015-03-10      NULL               4       1
2015-04-16      NULL               2       1
2015-04-12      NULL               2       1
2015-04-12      2015-04            2       3
2015-03-10      2015-03            4       3
2015-03-12      2015-03            1       3
2015-04-13      2015-04            3       3
2015-04-15      2015-04            2       3
2015-04-16      2015-04            2       3

可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)


这种函数,需要结合实际场景和数据去使用和研究,只看说明的话,很难理解。

这篇关于Hive分析窗口函数(四) GROUPING SETS,GROUPING__ID,CUBE,ROLLUP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050313

相关文章

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Python容器转换与共有函数举例详解

《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Python中Namespace()函数详解

《Python中Namespace()函数详解》Namespace是argparse模块提供的一个类,用于创建命名空间对象,它允许通过点操作符访问数据,比字典更易读,在深度学习项目中常用于加载配置、命... 目录1. 为什么使用 Namespace?2. Namespace 的本质是什么?3. Namesp

MySQL中如何求平均值常见实例(AVG函数详解)

《MySQL中如何求平均值常见实例(AVG函数详解)》MySQLavg()是一个聚合函数,用于返回各种记录中表达式的平均值,:本文主要介绍MySQL中用AVG函数如何求平均值的相关资料,文中通过代... 目录前言一、基本语法二、示例讲解1. 计算全表平均分2. 计算某门课程的平均分(例如:Math)三、结合