IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2) E. Bear and Forgotten Tree 2 bfs set 反图的生成树 快速连通块

本文主要是介绍IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2) E. Bear and Forgotten Tree 2 bfs set 反图的生成树 快速连通块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

老规矩,抄一波QSC,自己的写在后面

 

E. Bear and Forgotten Tree 2

题目连接:

http://www.codeforces.com/contest/653/problem/E

Description

A tree is a connected undirected graph consisting of n vertices and n  -  1 edges. Vertices are numbered 1 through n.

Limak is a little polar bear. He once had a tree with n vertices but he lost it. He still remembers something about the lost tree though.

You are given m pairs of vertices (a1, b1), (a2, b2), ..., (am, bm). Limak remembers that for each i there was no edge between ai and bi. He also remembers that vertex 1 was incident to exactly k edges (its degree was equal to k).

Is it possible that Limak remembers everything correctly? Check whether there exists a tree satisfying the given conditions

Input

The first line of the input contains three integers n, m and k () — the number of vertices in Limak's tree, the number of forbidden pairs of vertices, and the degree of vertex 1, respectively.

The i-th of next m lines contains two distinct integers ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi) — the i-th pair that is forbidden. It's guaranteed that each pair of vertices will appear at most once in the input.

Output

Print "possible" (without quotes) if there exists at least one tree satisfying the given conditions. Otherwise, print "impossible" (without quotes).

Sample Input

5 4 2
1 2
2 3
4 2
4 1

Sample Output

possible

Hint

题意

给你n个点,然后给你m个限制,每个限制说ai,bi之间不能连边。

问你能否构造出一棵生成树,且1号点的度数恰好等于k

题解:

首先忽略掉恰好等于k这个条件,实际上就是判断这个图是否连通就好了。

然后我们看看1号点的反图的度数是否大于等于k,小于k肯定不行。

然后我们把1号点去掉,跑bfs/dfs,看有多少个连通块和1号点能够相连,如果有大于k个连通块,肯定也是不行的。

小于等于k个连通块就可以。

然后现在问题是那个bfs和dfs跑连通块复杂度可能是n^2的,你遍历边的时候,会遍历到无意义的点。

所以我们需要用一个set去维护现在有哪些点还没有访问。

总之,就是你需要实现一个类似lowbit的功能,然后就可以优化你的dfs/bfs。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5+5;
int n,m,k;
set<int>vis,E[maxn];
int q[maxn],st;
void solve(int x)
{vis.erase(x);q[st++]=x;for(int i=0;i<st;i++){int now = q[i];int pre = 1;while(1){auto next = vis.upper_bound(pre);if(next==vis.end())break;int v = *next;pre = v;if(E[now].count(v))continue;q[st++]=v;vis.erase(v);}}
}
int main()
{scanf("%d%d%d",&n,&m,&k);for(int i=1;i<=m;i++){int x,y;scanf("%d%d",&x,&y);E[x].insert(y);E[y].insert(x);}if(k>n-1-E[1].size())return puts("impossible"),0;for(int i=2;i<=n;i++)vis.insert(i);int cnt=0;for(int i=2;i<=n;i++){if(vis.count(i)){cnt++;st=0;solve(i);int flag = 0;for(int j=0;j<st;j++)if(!E[1].count(q[j]))flag=1;if(flag==0)return puts("impossible"),0;}}if(cnt>k)return puts("impossible"),0;return puts("possible"),0;
}

这个题目set的作用是记录未访问的点。set其实模拟的是一个链表。bfs中访问过的点就从set中移掉了。而且无后效性。

为什么不用vis?用set更快。。可以跳过中间的点。。可能用链表会更快一点吧?

 

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5+5;
int n,m,k;
set<int>vis,E[maxn];
int q[maxn],st;
void solve(int x)
{vis.erase(x);q[st++]=x;for(int i=0;i<st;i++){int now = q[i];int pre = 1;for (auto it = vis.begin(); it != vis.end();){int v = *it;pre = v;if(E[now].count(v)){it++;continue;}q[st++]=v;vis.erase(it++);}}
}
int main()
{scanf("%d%d%d",&n,&m,&k);for(int i=1;i<=m;i++){int x,y;scanf("%d%d",&x,&y);E[x].insert(y);E[y].insert(x);}if(k>n-1-E[1].size())return puts("impossible"),0;for(int i=2;i<=n;i++)vis.insert(i);int cnt=0;for(int i=2;i<=n;i++){if(vis.count(i)){cnt++;st=0;solve(i);int flag = 0;for(int j=0;j<st;j++)if(!E[1].count(q[j]))flag=1;if(flag==0)return puts("impossible"),0;}}if(cnt>k)return puts("impossible"),0;return puts("possible"),0;
}

 

这篇关于IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2) E. Bear and Forgotten Tree 2 bfs set 反图的生成树 快速连通块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050274

相关文章

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

详解Java中如何使用JFreeChart生成甘特图

《详解Java中如何使用JFreeChart生成甘特图》甘特图是一种流行的项目管理工具,用于显示项目的进度和任务分配,在Java开发中,JFreeChart是一个强大的开源图表库,能够生成各种类型的图... 目录引言一、JFreeChart简介二、准备工作三、创建甘特图1. 定义数据集2. 创建甘特图3.