IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2) E. Bear and Forgotten Tree 2 bfs set 反图的生成树 快速连通块

本文主要是介绍IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2) E. Bear and Forgotten Tree 2 bfs set 反图的生成树 快速连通块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

老规矩,抄一波QSC,自己的写在后面

 

E. Bear and Forgotten Tree 2

题目连接:

http://www.codeforces.com/contest/653/problem/E

Description

A tree is a connected undirected graph consisting of n vertices and n  -  1 edges. Vertices are numbered 1 through n.

Limak is a little polar bear. He once had a tree with n vertices but he lost it. He still remembers something about the lost tree though.

You are given m pairs of vertices (a1, b1), (a2, b2), ..., (am, bm). Limak remembers that for each i there was no edge between ai and bi. He also remembers that vertex 1 was incident to exactly k edges (its degree was equal to k).

Is it possible that Limak remembers everything correctly? Check whether there exists a tree satisfying the given conditions

Input

The first line of the input contains three integers n, m and k () — the number of vertices in Limak's tree, the number of forbidden pairs of vertices, and the degree of vertex 1, respectively.

The i-th of next m lines contains two distinct integers ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi) — the i-th pair that is forbidden. It's guaranteed that each pair of vertices will appear at most once in the input.

Output

Print "possible" (without quotes) if there exists at least one tree satisfying the given conditions. Otherwise, print "impossible" (without quotes).

Sample Input

5 4 2
1 2
2 3
4 2
4 1

Sample Output

possible

Hint

题意

给你n个点,然后给你m个限制,每个限制说ai,bi之间不能连边。

问你能否构造出一棵生成树,且1号点的度数恰好等于k

题解:

首先忽略掉恰好等于k这个条件,实际上就是判断这个图是否连通就好了。

然后我们看看1号点的反图的度数是否大于等于k,小于k肯定不行。

然后我们把1号点去掉,跑bfs/dfs,看有多少个连通块和1号点能够相连,如果有大于k个连通块,肯定也是不行的。

小于等于k个连通块就可以。

然后现在问题是那个bfs和dfs跑连通块复杂度可能是n^2的,你遍历边的时候,会遍历到无意义的点。

所以我们需要用一个set去维护现在有哪些点还没有访问。

总之,就是你需要实现一个类似lowbit的功能,然后就可以优化你的dfs/bfs。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5+5;
int n,m,k;
set<int>vis,E[maxn];
int q[maxn],st;
void solve(int x)
{vis.erase(x);q[st++]=x;for(int i=0;i<st;i++){int now = q[i];int pre = 1;while(1){auto next = vis.upper_bound(pre);if(next==vis.end())break;int v = *next;pre = v;if(E[now].count(v))continue;q[st++]=v;vis.erase(v);}}
}
int main()
{scanf("%d%d%d",&n,&m,&k);for(int i=1;i<=m;i++){int x,y;scanf("%d%d",&x,&y);E[x].insert(y);E[y].insert(x);}if(k>n-1-E[1].size())return puts("impossible"),0;for(int i=2;i<=n;i++)vis.insert(i);int cnt=0;for(int i=2;i<=n;i++){if(vis.count(i)){cnt++;st=0;solve(i);int flag = 0;for(int j=0;j<st;j++)if(!E[1].count(q[j]))flag=1;if(flag==0)return puts("impossible"),0;}}if(cnt>k)return puts("impossible"),0;return puts("possible"),0;
}

这个题目set的作用是记录未访问的点。set其实模拟的是一个链表。bfs中访问过的点就从set中移掉了。而且无后效性。

为什么不用vis?用set更快。。可以跳过中间的点。。可能用链表会更快一点吧?

 

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5+5;
int n,m,k;
set<int>vis,E[maxn];
int q[maxn],st;
void solve(int x)
{vis.erase(x);q[st++]=x;for(int i=0;i<st;i++){int now = q[i];int pre = 1;for (auto it = vis.begin(); it != vis.end();){int v = *it;pre = v;if(E[now].count(v)){it++;continue;}q[st++]=v;vis.erase(it++);}}
}
int main()
{scanf("%d%d%d",&n,&m,&k);for(int i=1;i<=m;i++){int x,y;scanf("%d%d",&x,&y);E[x].insert(y);E[y].insert(x);}if(k>n-1-E[1].size())return puts("impossible"),0;for(int i=2;i<=n;i++)vis.insert(i);int cnt=0;for(int i=2;i<=n;i++){if(vis.count(i)){cnt++;st=0;solve(i);int flag = 0;for(int j=0;j<st;j++)if(!E[1].count(q[j]))flag=1;if(flag==0)return puts("impossible"),0;}}if(cnt>k)return puts("impossible"),0;return puts("possible"),0;
}

 

这篇关于IndiaHacks 2016 - Online Edition (Div. 1 + Div. 2) E. Bear and Forgotten Tree 2 bfs set 反图的生成树 快速连通块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050274

相关文章

hdu1254(嵌套bfs,两次bfs)

/*第一次做这种题感觉很有压力,思路还是有点混乱,总是wa,改了好多次才ac的思路:把箱子的移动当做第一层bfs,队列节点要用到当前箱子坐标(x,y),走的次数step,当前人的weizhi(man_x,man_y),要判断人能否将箱子推到某点时要嵌套第二层bfs(人的移动);代码如下:

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 3050 dfs + set的妙用

题意: 给一个5x5的矩阵,求由多少个由连续6个元素组成的不一样的字符的个数。 解析: dfs + set去重搞定。 代码: #include <iostream>#include <cstdio>#include <set>#include <cstdlib>#include <algorithm>#include <cstring>#include <cm