Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入

2024-06-11 00:44

本文主要是介绍Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有了 Ollama,你可以在本地运行各种大型语言模型 (LLM),并从中生成嵌入。Spring AI 通过 OllamaEmbeddingModel 支持 Ollama 文本嵌入。

嵌入是一个浮点数向量(列表)。两个向量之间的距离可以衡量它们之间的相关性。距离小表示关联度高,距离大表示关联度低。

前提条件

首先需要在本地计算机上运行 Ollama。

请参阅官方 Ollama 项目 README,开始在本地计算机上运行模型。

安装 Ollama 运行 llama3 将下载一个 4.7GB 的模型工件。

添加资源库和 BOM

Spring AI 工件发布在 Spring Milestone 和 Snapshot 资源库中。请参阅 "资源库"部分,将这些资源库添加到您的构建系统中。

为了帮助进行依赖性管理,Spring AI 提供了一个 BOM(物料清单),以确保在整个项目中使用一致的 Spring AI 版本。请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建系统中。

自动配置

Spring AI 为 Azure Ollama 嵌入式客户端提供 Spring Boot 自动配置功能。要启用它,请在 Maven pom.xml 文件中添加以下依赖关系:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>

 或 Gradle build.gradle 构建文件。

dependencies {implementation 'org.springframework.ai:spring-ai-ollama-spring-boot-starter'
}

请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建文件中

spring.ai.ollama.embedding.options.* 属性用于配置所有嵌入请求的默认选项。(它作为 OllamaEmbeddingModel#withDefaultOptions() 实例使用)。

嵌入属性

前缀 spring.ai.ollama 是配置与 Ollama 连接的属性前缀

PropertyDescriptionDefault

spring.ai.ollama.base-url

运行 Ollama API 服务器的基本 URL。

localhost:11434

The prefix spring.ai.ollama.embedding.options is the property prefix that configures the EmbeddingModel implementation for Ollama.

PropertyDescriptionDefault

spring.ai.ollama.embedding.enabled

启用 Ollama 嵌入模型。

true

spring.ai.ollama.embedding.options.model

要使用的支持模型名称。

mistral

 其余选项属性基于 Ollama 有效参数和值以及Ollama 类型。默认值基于Ollama 类型默认值。

Property

Description

Default

spring.ai.ollama.embedding.options.numa

是否使用 NUMA。

false

spring.ai.ollama.embedding.options.num-ctx

设置用于生成下一个标记的上下文窗口的大小。

2048

spring.ai.ollama.embedding.options.num-batch

-

spring.ai.ollama.embedding.options.num-gqa

变压器层中 GQA 组的数量。某些型号需要,例如 llama2:70b 为 8。

-

spring.ai.ollama.embedding.options.num-gpu

要发送到 GPU 的层数。在 macOS 上,默认值为 1 表示启用金属支持,0 表示禁用。

-

spring.ai.ollama.embedding.options.main-gpu

-

spring.ai.ollama.embedding.options.low-vram

-

spring.ai.ollama.embedding.options.f16-kv

-

spring.ai.ollama.embedding.options.logits-all

-

spring.ai.ollama.embedding.options.vocab-only

-

spring.ai.ollama.embedding.options.use-mmap

-

spring.ai.ollama.embedding.options.use-mlock

-

spring.ai.ollama.embedding.options.num-thread

设置计算时使用的线程数。默认情况下,Ollama 会检测线程数以获得最佳性能。建议将此值设置为系统的物理 CPU 内核数(而非逻辑内核数)。

-

spring.ai.ollama.embedding.options.num-keep

-

spring.ai.ollama.embedding.options.seed

设置生成文本时使用的随机数种子。将其设置为一个特定的数字将使模型为相同的提示生成相同的文本。

0

spring.ai.ollama.embedding.options.num-predict

生成文本时要预测的最大标记数。(默认值:128,-1 = 无限生成,-2 = 填充上下文)

128

spring.ai.ollama.embedding.options.top-k

降低产生无意义答案的概率。数值越大(如 100),答案就越多样化,而数值越小(如 10),答案就越保守。

40

spring.ai.ollama.embedding.options.top-p

与 top-k 一起使用。较高的值(如 0.95)将产生更多样化的文本,而较低的值(如 0.5)将产生更集中和保守的文本。

0.9

spring.ai.ollama.embedding.options.tfs-z

无尾采样用于减少输出中可能性较低的标记的影响。数值越大(例如 2.0),影响越小,而数值为 1.0 时,则会禁用此设置。

1

spring.ai.ollama.embedding.options.typical-p

-

spring.ai.ollama.embedding.options.repeat-last-n

设置模型回溯多远以防止重复。(默认值:64,0 = 禁用,-1 = num_ctx)

64

spring.ai.ollama.embedding.options.temperature

模型的温度。温度越高,模型的答案越有创意。

0.8

spring.ai.ollama.embedding.options.repeat-penalty

设置对重复的惩罚力度。数值越大(如 1.5),对重复的惩罚力度就越大,而数值越小(如 0.9),惩罚力度就越宽松。

1.1

spring.ai.ollama.embedding.options.presence-penalty

-

spring.ai.ollama.embedding.options.frequency-penalty

-

spring.ai.ollama.embedding.options.mirostat

启用 Mirostat 采样以控制复杂度。(默认值:0,0 = 禁用,1 = Mirostat,2 = Mirostat 2.0)

0

spring.ai.ollama.embedding.options.mirostat-tau

控制输出的连贯性和多样性之间的平衡。数值越小,文字越集中、连贯。

5.0

spring.ai.ollama.embedding.options.mirostat-eta

影响算法对生成文本的反馈做出反应的速度。学习率越低,算法的调整速度就越慢,而学习率越高,算法的反应速度就越快。

0.1

spring.ai.ollama.embedding.options.penalize-newline

-

spring.ai.ollama.embedding.options.stop

设置要使用的停止序列。遇到这种模式时,LLM 将停止生成文本并返回。可以通过在模型文件中指定多个单独的停止参数来设置多个停止模式。

-

所有以 spring.ai.ollama.embedding.options 为前缀的属性都可以通过在 EmbeddingRequest 调用中添加特定于请求的 Runtime Options 来在运行时重写。

运行时选项

OllamaOptions.java 提供了 Ollama 配置,如要使用的模型、底层 GPU 和 CPU 调整等。

默认选项也可使用 spring.ai.ollama.embedding.options 属性进行配置。

启动时,使用 OllamaEmbeddingModel#withDefaultOptions() 配置用于所有嵌入请求的默认选项。在运行时,你可以使用作为 EmbeddingRequest 一部分的 OllamaOptions 实例来覆盖默认选项。

例如,要覆盖特定请求的默认模型名称:

EmbeddingResponse embeddingResponse = embeddingModel.call(new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),OllamaOptions.create().withModel("Different-Embedding-Model-Deployment-Name"));

示例Controller

这将创建一个 EmbeddingModel 实现,您可以将其注入到您的类中。下面是一个使用 EmbeddingModel 实现的简单 @Controller 类示例。

@RestController
public class EmbeddingController {private final EmbeddingModel embeddingModel;@Autowiredpublic EmbeddingController(EmbeddingModel embeddingModel) {this.embeddingModel = embeddingModel;}@GetMapping("/ai/embedding")public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {EmbeddingResponse embeddingResponse = this.embeddingModel.embedForResponse(List.of(message));return Map.of("embedding", embeddingResponse);}
}

手动配置

如果不使用 Spring Boot,可以手动配置 OllamaEmbeddingModel。为此,请在项目的 Maven pom.xml 文件中添加 spring-ai-ollama 依赖关系:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama</artifactId>
</dependency>

或 Gradle build.gradle 构建文件。

dependencies {implementation 'org.springframework.ai:spring-ai-ollama'
}

请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建文件中。

spring-ai-ollama 依赖关系还提供对 OllamaChatModel 的访问。有关 OllamaChatModel 的更多信息,请参阅Ollama Chat Client 部分。

接下来,创建一个 OllamaEmbeddingModel 实例,并用它来计算两个输入文本之间的相似度:

var ollamaApi = new OllamaApi();var embeddingModel = new OllamaEmbeddingModel(ollamaApi).withDefaultOptions(OllamaOptions.create().withModel(OllamaOptions.DEFAULT_MODEL).toMap());EmbeddingResponse embeddingResponse = embeddingModel.embedForResponse(List.of("Hello World", "World is big and salvation is near"));

OllamaOptions 为所有嵌入请求提供配置信息。

这篇关于Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049739

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏