Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入

2024-06-11 00:44

本文主要是介绍Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有了 Ollama,你可以在本地运行各种大型语言模型 (LLM),并从中生成嵌入。Spring AI 通过 OllamaEmbeddingModel 支持 Ollama 文本嵌入。

嵌入是一个浮点数向量(列表)。两个向量之间的距离可以衡量它们之间的相关性。距离小表示关联度高,距离大表示关联度低。

前提条件

首先需要在本地计算机上运行 Ollama。

请参阅官方 Ollama 项目 README,开始在本地计算机上运行模型。

安装 Ollama 运行 llama3 将下载一个 4.7GB 的模型工件。

添加资源库和 BOM

Spring AI 工件发布在 Spring Milestone 和 Snapshot 资源库中。请参阅 "资源库"部分,将这些资源库添加到您的构建系统中。

为了帮助进行依赖性管理,Spring AI 提供了一个 BOM(物料清单),以确保在整个项目中使用一致的 Spring AI 版本。请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建系统中。

自动配置

Spring AI 为 Azure Ollama 嵌入式客户端提供 Spring Boot 自动配置功能。要启用它,请在 Maven pom.xml 文件中添加以下依赖关系:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>

 或 Gradle build.gradle 构建文件。

dependencies {implementation 'org.springframework.ai:spring-ai-ollama-spring-boot-starter'
}

请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建文件中

spring.ai.ollama.embedding.options.* 属性用于配置所有嵌入请求的默认选项。(它作为 OllamaEmbeddingModel#withDefaultOptions() 实例使用)。

嵌入属性

前缀 spring.ai.ollama 是配置与 Ollama 连接的属性前缀

PropertyDescriptionDefault

spring.ai.ollama.base-url

运行 Ollama API 服务器的基本 URL。

localhost:11434

The prefix spring.ai.ollama.embedding.options is the property prefix that configures the EmbeddingModel implementation for Ollama.

PropertyDescriptionDefault

spring.ai.ollama.embedding.enabled

启用 Ollama 嵌入模型。

true

spring.ai.ollama.embedding.options.model

要使用的支持模型名称。

mistral

 其余选项属性基于 Ollama 有效参数和值以及Ollama 类型。默认值基于Ollama 类型默认值。

Property

Description

Default

spring.ai.ollama.embedding.options.numa

是否使用 NUMA。

false

spring.ai.ollama.embedding.options.num-ctx

设置用于生成下一个标记的上下文窗口的大小。

2048

spring.ai.ollama.embedding.options.num-batch

-

spring.ai.ollama.embedding.options.num-gqa

变压器层中 GQA 组的数量。某些型号需要,例如 llama2:70b 为 8。

-

spring.ai.ollama.embedding.options.num-gpu

要发送到 GPU 的层数。在 macOS 上,默认值为 1 表示启用金属支持,0 表示禁用。

-

spring.ai.ollama.embedding.options.main-gpu

-

spring.ai.ollama.embedding.options.low-vram

-

spring.ai.ollama.embedding.options.f16-kv

-

spring.ai.ollama.embedding.options.logits-all

-

spring.ai.ollama.embedding.options.vocab-only

-

spring.ai.ollama.embedding.options.use-mmap

-

spring.ai.ollama.embedding.options.use-mlock

-

spring.ai.ollama.embedding.options.num-thread

设置计算时使用的线程数。默认情况下,Ollama 会检测线程数以获得最佳性能。建议将此值设置为系统的物理 CPU 内核数(而非逻辑内核数)。

-

spring.ai.ollama.embedding.options.num-keep

-

spring.ai.ollama.embedding.options.seed

设置生成文本时使用的随机数种子。将其设置为一个特定的数字将使模型为相同的提示生成相同的文本。

0

spring.ai.ollama.embedding.options.num-predict

生成文本时要预测的最大标记数。(默认值:128,-1 = 无限生成,-2 = 填充上下文)

128

spring.ai.ollama.embedding.options.top-k

降低产生无意义答案的概率。数值越大(如 100),答案就越多样化,而数值越小(如 10),答案就越保守。

40

spring.ai.ollama.embedding.options.top-p

与 top-k 一起使用。较高的值(如 0.95)将产生更多样化的文本,而较低的值(如 0.5)将产生更集中和保守的文本。

0.9

spring.ai.ollama.embedding.options.tfs-z

无尾采样用于减少输出中可能性较低的标记的影响。数值越大(例如 2.0),影响越小,而数值为 1.0 时,则会禁用此设置。

1

spring.ai.ollama.embedding.options.typical-p

-

spring.ai.ollama.embedding.options.repeat-last-n

设置模型回溯多远以防止重复。(默认值:64,0 = 禁用,-1 = num_ctx)

64

spring.ai.ollama.embedding.options.temperature

模型的温度。温度越高,模型的答案越有创意。

0.8

spring.ai.ollama.embedding.options.repeat-penalty

设置对重复的惩罚力度。数值越大(如 1.5),对重复的惩罚力度就越大,而数值越小(如 0.9),惩罚力度就越宽松。

1.1

spring.ai.ollama.embedding.options.presence-penalty

-

spring.ai.ollama.embedding.options.frequency-penalty

-

spring.ai.ollama.embedding.options.mirostat

启用 Mirostat 采样以控制复杂度。(默认值:0,0 = 禁用,1 = Mirostat,2 = Mirostat 2.0)

0

spring.ai.ollama.embedding.options.mirostat-tau

控制输出的连贯性和多样性之间的平衡。数值越小,文字越集中、连贯。

5.0

spring.ai.ollama.embedding.options.mirostat-eta

影响算法对生成文本的反馈做出反应的速度。学习率越低,算法的调整速度就越慢,而学习率越高,算法的反应速度就越快。

0.1

spring.ai.ollama.embedding.options.penalize-newline

-

spring.ai.ollama.embedding.options.stop

设置要使用的停止序列。遇到这种模式时,LLM 将停止生成文本并返回。可以通过在模型文件中指定多个单独的停止参数来设置多个停止模式。

-

所有以 spring.ai.ollama.embedding.options 为前缀的属性都可以通过在 EmbeddingRequest 调用中添加特定于请求的 Runtime Options 来在运行时重写。

运行时选项

OllamaOptions.java 提供了 Ollama 配置,如要使用的模型、底层 GPU 和 CPU 调整等。

默认选项也可使用 spring.ai.ollama.embedding.options 属性进行配置。

启动时,使用 OllamaEmbeddingModel#withDefaultOptions() 配置用于所有嵌入请求的默认选项。在运行时,你可以使用作为 EmbeddingRequest 一部分的 OllamaOptions 实例来覆盖默认选项。

例如,要覆盖特定请求的默认模型名称:

EmbeddingResponse embeddingResponse = embeddingModel.call(new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),OllamaOptions.create().withModel("Different-Embedding-Model-Deployment-Name"));

示例Controller

这将创建一个 EmbeddingModel 实现,您可以将其注入到您的类中。下面是一个使用 EmbeddingModel 实现的简单 @Controller 类示例。

@RestController
public class EmbeddingController {private final EmbeddingModel embeddingModel;@Autowiredpublic EmbeddingController(EmbeddingModel embeddingModel) {this.embeddingModel = embeddingModel;}@GetMapping("/ai/embedding")public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {EmbeddingResponse embeddingResponse = this.embeddingModel.embedForResponse(List.of(message));return Map.of("embedding", embeddingResponse);}
}

手动配置

如果不使用 Spring Boot,可以手动配置 OllamaEmbeddingModel。为此,请在项目的 Maven pom.xml 文件中添加 spring-ai-ollama 依赖关系:

<dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-ollama</artifactId>
</dependency>

或 Gradle build.gradle 构建文件。

dependencies {implementation 'org.springframework.ai:spring-ai-ollama'
}

请参阅 "依赖关系管理 "部分,将 Spring AI BOM 添加到构建文件中。

spring-ai-ollama 依赖关系还提供对 OllamaChatModel 的访问。有关 OllamaChatModel 的更多信息,请参阅Ollama Chat Client 部分。

接下来,创建一个 OllamaEmbeddingModel 实例,并用它来计算两个输入文本之间的相似度:

var ollamaApi = new OllamaApi();var embeddingModel = new OllamaEmbeddingModel(ollamaApi).withDefaultOptions(OllamaOptions.create().withModel(OllamaOptions.DEFAULT_MODEL).toMap());EmbeddingResponse embeddingResponse = embeddingModel.embedForResponse(List.of("Hello World", "World is big and salvation is near"));

OllamaOptions 为所有嵌入请求提供配置信息。

这篇关于Spring AI 第三讲Embeddings(嵌入式) Model API 第一讲Ollama 嵌入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049739

相关文章

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Java中Scanner的用法示例小结

《Java中Scanner的用法示例小结》有时候我们在编写代码的时候可能会使用输入和输出,那Java也有自己的输入和输出,今天我们来探究一下,对JavaScanner用法相关知识感兴趣的朋友一起看看吧... 目录前言一 输出二 输入Scanner的使用多组输入三 综合练习:猜数字游戏猜数字前言有时候我们在

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Java中的JSONObject详解

《Java中的JSONObject详解》:本文主要介绍Java中的JSONObject详解,需要的朋友可以参考下... Java中的jsONObject详解一、引言在Java开发中,处理JSON数据是一种常见的需求。JSONObject是处理JSON对象的一个非常有用的类,它提供了一系列的API来操作J

SpringBoot多数据源配置完整指南

《SpringBoot多数据源配置完整指南》在复杂的企业应用中,经常需要连接多个数据库,SpringBoot提供了灵活的多数据源配置方式,以下是详细的实现方案,需要的朋友可以参考下... 目录一、基础多数据源配置1. 添加依赖2. 配置多个数据源3. 配置数据源Bean二、JPA多数据源配置1. 配置主数据

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4