本文主要是介绍nyoj-148-fibonacci数列(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
fibonacci数列(二)
- 描述
-
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
- 输入
- The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1. 输出
- For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000). 样例输入
-
0 9 1000000000 -1
样例输出 -
0 34 6875
矩阵的快速幂
#include<stdio.h> #include<string.h> int main() {int n,i,j,k;while(scanf("%d",&n)&&n!=-1){int a[2][2]={1,0,1,0};int b[2][2]={1,1,1,0};int c[2][2];while(n){if(n&1){memset(c,0,sizeof(c));for(i=0;i<2;i++)for(j=0;j<2;j++)for(k=0;k<2;k++)c[i][k]+=(a[i][j]*b[j][k])%10000;for(i=0;i<2;i++)for(j=0;j<2;j++)a[i][j]=c[i][j];}memset(c,0,sizeof(c));for(i=0;i<2;i++)for(j=0;j<2;j++)for(k=0;k<2;k++)c[i][k]+=(b[i][j]*b[j][k])%10000;for(i=0;i<2;i++)for(j=0;j<2;j++)b[i][j]=c[i][j];n>>=1;}printf("%d\n",a[1][1]%10000);}return 0; }
这篇关于nyoj-148-fibonacci数列(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!