二分#背包#快排#LCS详解

2024-06-10 14:36
文章标签 详解 二分 背包 快排 lcs

本文主要是介绍二分#背包#快排#LCS详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二分#背包#快排#LCS详解

文章目录

  • 二分#背包#快排#LCS详解
    • 1. 二分搜索
    • 2. 01背包问题
    • 3. 快速排序
    • 4. 最长公共子序列

1. 二分搜索

在处理大规模数据集时,查找操作的效率显得尤为重要。二分搜索是一种在有序数组中查找目标值的高效算法,其时间复杂度为O(log n)。

二分搜索通过每次比较目标值与数组中间元素的大小来缩小搜索范围。每次比较后,搜索范围缩小一半,直到找到目标值或搜索范围为空。

二分搜索适用于以下场景:

  1. 快速查找有序数组中的目标值。
  2. 数据库系统中常用二分搜索在B树或B+树索引中查找记录。
  3. 需要在算法中频繁查找数据的场景,如在排序数据中查找特定元素。

力扣 LCR 068. 搜索插入位置
给定一个排序的整数数组 nums 和一个整数目标值 target ,请在数组中找到 target ,并返回其下标。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4

示例 4:
输入: nums = [1,3,5,6], target = 0
输出: 0

示例 5:
输入: nums = [1], target = 0
输出: 0

提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 为无重复元素的升序排列数组
-104 <= target <= 104

案例代码

class Solution:def searchInsert(self, nums: List[int], target: int) -> int:l,r=0,len(nums)-1while l<=r:mid=(l+r)//2if nums[mid]==target:return midelif nums[mid]>target:r=mid-1else :l=mid+1return l

2. 01背包问题

C/C++详解地址:01背包和完全背包

背包问题是一类经典的优化问题,涉及在给定容量的背包中选择物品以使得背包内物品的总价值最大化。

0/1背包问题通过动态规划解决,使用一个二维数组 dp 来记录每个子问题的解。dp[i][w] 表示前 i 个物品在背包容量为 w 时的最大价值。

背包问题适用于以下场景:

  1. 在有限资源下,如何选择最优方案以获得最大收益。
  2. 在有限资金下选择投资组合以最大化收益。
  3. 在有限预算下选择项目组合以最大化回报。

例题
在这里插入图片描述

动态规划:

dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)

Python代码实现

n,v=map(int,input().split())
dp=[[0]*(v+1) for i in range(n+1)] # [[0]*cols for i in range(rows)]for i in range(1,n+1):wi,vi=map(int,input().split())for j in range(0,v+1):if j>=wi:dp[i][j]=max(dp[i-1][j],dp[i-1][j-wi]+vi)else:dp[i][j]=dp[i-1][j]print(dp[n][v])

3. 快速排序

快速排序是一种高效的排序算法,其平均时间复杂度为O(n log n)。快速排序通过分治法将数组分成两部分,递归地排序每部分。

快速排序通过选择一个基准元素(pivot),将数组分为两部分,一部分小于基准元素,另一部分大于基准元素。然后递归地对这两部分进行排序。

快速排序适用于以下场景:

  1. 处理大规模数据集的排序任务。
  2. 大多数编程语言的内置排序函数都采用了快速排序或其变种。
  3. 在数据分析和处理过程中,对数据进行排序以便后续操作。

力扣 4. 排序数组
给你一个整数数组 nums,请你将该数组升序排列。

示例 1:
输入:nums = [5,2,3,1]
输出:[1,2,3,5]

示例 2:
输入:nums = [5,1,1,2,0,0]
输出:[0,0,1,1,2,5]

提示:
1 <= nums.length <= 5 * 104
-5 * 104 <= nums[i] <= 5 * 104

python代码示例

class Solution:def sortArray(self, nums: List[int]) -> List[int]:def partition(arr, low, high):pivot = arr[low]                                        left, right = low, high     while left < right:while left<right and arr[right] >= pivot:          right -= 1arr[left] = arr[right]                             while left<right and arr[left] <= pivot:         left += 1arr[right] = arr[left]                        arr[left] = pivot          return leftdef randomPartition(arr, low, high):pivot_idx = random.randint(low, high)                   arr[low], arr[pivot_idx] = arr[pivot_idx], arr[low]     return partition(arr, low, high)def quickSort(arr, low, high):if low >= high:            return     mid = randomPartition(arr, low, high)   quickSort(arr, low, mid-1)            quickSort(arr, mid+1, high)quickSort(nums, 0, len(nums)-1)             return nums

4. 最长公共子序列

C/C++详解地址:LCS、LIS模型详解

最长公共子序列(LCS)是指在两个序列中,找出长度最长的公共子序列。

LCS通过动态规划解决,使用一个二维数组 dp 来记录每个子问题的解。dp[i][j] 表示 text1[0..i-1]text2[0..j-1] 的LCS长度。

LCS适用于以下场景:

  1. 文本比较:在文本处理和比较中,用于查找两个文本的相似度。
  2. 版本控制:在版本控制系统中,用于计算两个版本之间的差异。
  3. 生物信息学:在基因序列分析中,用于查找DNA序列的相似部分。

python代码示例

def LCS(a, b):n = len(a)m = len(b)dp = [[0] * (m + 1) for _ in range(n + 1)]for i in range(1, n + 1):for j in range(1, m + 1):if a[i - 1] == b[j - 1]:dp[i][j] = dp[i - 1][j - 1] + 1else:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])return dp[n][m]n,m=map(int,input().split())
a=list(map(int,input().split()))
b=list(map(int,input().split()))result = LCS(a, b)
print(result)

如果对Golang、Mysql、Linux感兴趣的小伙伴,也可以关注我的公众号0.o
在这里插入图片描述

这篇关于二分#背包#快排#LCS详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1048440

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要