C++ 贪心算法——跳跃游戏、划分字母区间

2024-06-10 10:28

本文主要是介绍C++ 贪心算法——跳跃游戏、划分字母区间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

   一:跳跃游戏

   55. 跳跃游戏

   题目描述:给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。

   示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1,然后从下标 13 步到达最后一个下标。

   示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论你怎么跳,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 ,所以永远不可能到达最后一个下标。

   提示:

* 1 <= nums.length <= 10* 0 <= nums[i] <= 10

   解题思路:

   这道题最关键的地方就是不要去想在当前位置,我应该跳到哪里去,而是只需要记录当前能到达的最远位置,就可以了,遍历一遍给定的数组,若发现遍历到的当前位置i大于最远可达距离,则说明无法到达,直接返回false,若数组遍历完了,没有返回false,说明遍历到每一个i处时,均小于当时的最远距离,即均可达,返回true。

   参考程序:

class Solution {
public:bool canJump(vector<int>& nums) {int k = 0;for (int i = 0; i < nums.size(); i++) {if (i > k) return false;k = max(k, i + nums[i]);}return true;}
};

在这里插入图片描述

   二:跳跃游戏 II

   45. 跳跃游戏 II

   题目描述:给定一个长度为 n 的 0 索引整数数组 nums ,初始位置为 nums[0] 。每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

0 <= j <= nums[i]i + j < n

   返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1] 。

   示例 1:

输入:nums = [2,3,1,1,4]
输出:2
解释:跳到最后一个位置的最小跳跃次数是 2。
从下标为 0 跳跃下标为 1 的位置,跳 1 步,然后再跳 3 步到达数组的最后一个位置。

   示例 2:

输入:nums = [2,3,0,1,4]
输出:2

   提示:

* 1 <= nums.length <= 10* 0 <= nums[i] <= 1000
* 题目保证可以到达 nums[n-1]

   解题思路:

   这道题最关键的地方同样是不要去想在当前位置,我应该跳到哪里去。而且根据每次跳跃所能到达的最远距离,将给定数组划分为很多区间,遍历当前区间中所有值,得到的最远距离,作为下一个区间的右界限,划分的区间数-1即为所需的最少跳跃次数。这么说可能有点懵,下面举一个例子,大家就明白了

   例如,对于[2,3,1,1,4,2,1,1,3],起始的时候,只能从索引为0的2处起跳,

   则[2,3,1,1,4,2,1,1,3] 划分为 [2] [3,1,1,4,2,1,1,3]

   从索引为0的2处起跳,其最远可以到达的索引为2的1处,按最远可到达的区域,划分数组

   [2] [3,1,1,4,2,1,1,3] 划分为 [2] [3,1] [1,4,2,1,1,3]

   遍历新得到的区间[3,1],记录最远距离,若从3处起跳,最远可到达索引为4的4处,若从1处起跳,则只能到达4前面索引为3的1处,所以当前区间[3,1]起跳,最远可到达索引为4的4处,因此

   [2] [3,1] [1,4,2,1,1,3] 划分为 [2] [3,1] [1,4] [2,1,1,3]

   同理,遍历新得到的区间[1,4],记录最远距离,若从1处起跳,最远可到达索引为4的4处,若从4处起跳,则最远可以到达后面索引为8的3处,所以当前区间[3,1]起跳,最远可到达索引为8的3处,因此

   已经超过或恰好到达最后一个元素,不需要继续划分了,即

   起始位置: [2]

   第一次跳跃,新的可达区域 [3,1]

   第二次跳跃,新的可达区域 [1,4]

   第三次跳跃,新的可达区域 [2,1,1,3]

   上面过程中遍历当前区间,记录从当前区间起跳可到达的最远距离的过程对应下面程序中的

   maxPos = max(nums[i] + i, maxPos);

   上面每个区间的右界限,即对应下面程序中的end变量,当遍历完当前区间后,遍历当前区间时得到的最远可达距离maxPos,即为下一个区间的右界限,即end = maxPos;

   参考程序:

class Solution {
public:int jump(vector<int>& nums){int ans = 0,end = 0,maxPos = 0;for (int i = 0; i < nums.size() - 1; i++){maxPos = max(nums[i] + i, maxPos);if (i == end){ end = maxPos; ans++;}   }return ans;}};

在这里插入图片描述

   三、划分字母区间

   763. 划分字母区间

   题目描述:给你一个字符串 s。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s。返回一个表示每个字符片段长度的数组。

   示例1:

  • 输入:s = "ababcbacadefegdehijhklij"
  • 输出:[9,7,8]
  • 解释:
    划分结果为 "ababcbaca", "defegde", "hijhklij"
    每个字母最多出现在一个片段中。
    像 “ababcbacadefegde”, “hijhklij” 这样的划分是错误的,因为划分的片段数较少。

   示例2:

  • 输入:s = "eccbbdbec"
  • 输出:[10]

   注意:

  • 1 <= s.length <= 500
  • s 仅由小写英文字母组成

   解决思路一:

   ①、首先,遍历一遍给定的字符串s,记录每个字母出现的次数,存放在变量int zm[26]中。

   ②、然后,进行第二遍遍历,在每轮迭代中,将当前字符放入map中, map的键选取为字母映射编号(0~25),值选取为当前出现次数。并进行判断,若map中当前字符出现的次数与第一次遍历时存放在数组zm中的次数相等,说明该字符已经全部出现了,将其从map表中删除。若map表为空,则说明,遍历到当前位置处,前面出现的所有字符,后面均不再出现,可以在此处进行切割,将个数累计变量进行存储(也就是我们所要输出的长度),然后将累计量清零,继续进行下一轮迭代,直至第二遍遍历结束。

   上述思路的参考程序如下:

class Solution {
public:vector<int> partitionLabels(string s) {int zm[26]={0}; unordered_map<int,int> map; vector<int> ans; int iter=0;for(int i=0;i<s.size();i++){ zm[s[i]-'a']++;}  //第一遍遍历,统计各个字母出现次数for(int i=0;i<s.size();i++) //第二遍遍历,统计切割段数{ map[s[i]-'a']++; // 键选取为字母映射编号(0~25),值选取为当前出现次数auto it = map.begin();while (it != map.end()) {if (it->second == zm[it->first]) it = map.erase(it);     else break;}iter++;if(map.empty()) {ans.push_back(iter); iter=0;}  //当map为空时,说明当前已经出现过的元素,已经全部出现了}return ans;}
};

在这里插入图片描述

   上述方案的时间复杂度较低,属于时间最优的算法之一,但由于使用了额外的map表,空间复杂度比较高,下面介绍一种改进方案,不再需要使用额外的map表,从而降低空间复杂度。


   解决思路二:

   ①、首先,同样是遍历一遍给定的字符串s,所不同的是,记录的是每个字符最后出现的位置,存放在int hash[27]中。

   ②、然后,进行第二遍遍历,最远边界right初始化为0,左边界left初始化为0,在每轮迭代中,对最远边界进行更新,若当前字符i的最远边界大于right,则对right进行更新。在每轮迭代中,会进行判断,若当前字符i处于最远边界right处,则说明,到达了前面出现的所有字符的最远边界处,前面出现的所有字符,后面均不再出现,可以在此处进行切割。right-left+1,即为当前片段的长度,压入结果队列中。并将left更新为i + 1。继续进行下一轮迭代,直至第二遍遍历结束。

   上述思路的参考程序如下:

class Solution {
public:vector<int> partitionLabels(string S) {int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置hash[S[i] - 'a'] = i;}vector<int> result;int left = 0;int right = 0;for (int i = 0; i < S.size(); i++) {right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界if (i == right) {result.push_back(right - left + 1);left = i + 1;}}return result;}
}

在这里插入图片描述

   上述方案的时间复杂度同样较低,属于时间最优的算法之一,且无需使用额外的map表,空间复杂度也得到了有效降低。


在这里插入图片描述

这篇关于C++ 贪心算法——跳跃游戏、划分字母区间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047904

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

C/C++通过IP获取局域网网卡MAC地址

《C/C++通过IP获取局域网网卡MAC地址》这篇文章主要为大家详细介绍了C++如何通过Win32API函数SendARP从IP地址获取局域网内网卡的MAC地址,感兴趣的小伙伴可以跟随小编一起学习一下... C/C++通过IP获取局域网网卡MAC地址通过win32 SendARP获取MAC地址代码#i