R语言统计分析——数据集概念和数据结构

2024-06-10 08:44

本文主要是介绍R语言统计分析——数据集概念和数据结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:R语言实战.第2版

1、数据集的概念

        数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量。

        不同行业对于数据集的行和列叫法不同。统计学称为观测(observation)和变量(variable),数据库中称为记录(record)和字段(field),数据挖掘和机器学习成为示例(example)和属性(attribute)。

        R中有许多用于存储数据的结构,包括标量、向量、数组、数据框和列表。

        R可以处理的额数据类型包括数值型、字符型、逻辑型、复数型和原生型。

2、数据结构

(1)向量 

        向量是用于存储数值型、字符型或逻辑型数据的一维数组。执行组合功能的函数c()可用来创建向量。

a<-c(1,2,5,3,6,-2,4)
b<-c('one','two','three')
c<-c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE)

        这里a是数值型向量,b是字符型向量,c是逻辑型向量。注意:单个向量中的数据必须拥有相同的类型或模式(数值型、字符型或逻辑型等)。同一向量中无法混杂不同模型的数据。

        通过在方括号中给定元素所处位置的数值,我们可以访问向量中的元素。例如:

注意:标量是只含有一个元素的向量,它们用于保存常量。

f<-3
g<-"cn"
h<-TRUE

(2)矩阵

        矩阵是一个二维数组,只是每个元素都拥有相同的模式(数值型、字符型或逻辑型)。可通过函数matrix()创建矩阵。

        matrix(vector,nrow,ncol,byrow,dimnames)

        vector包含矩阵的元素,

        nrow和ncol用以指定行和列的维数

        dimnames包含了可选的、以字符型向量表示的行名和列名

        byrow则表明矩阵应当按行填充还是按列填充,默认按列填充。

# 创建一个5×4的矩阵
y<-matrix(1:20,nrow=5,ncol=4)
y# 按行填充2×2的矩阵
cells<-c(1,26,24,68)
rnames<-c("R1","R2")
cnames<-c("C1","C2")
mymatrix<-matrix(cells,nrow=2,ncol=2,byrow=TRUE,dimnames=list(rnames,cnames))
mymatrix# 按列填充的2×2矩阵
mymatrix<-matrix(cells,nrow=2,ncol=2,byrow=FALSE,dimnames=list(rnames,cnames))
mymatrix

        我们可以使用下标和方括号来选择矩阵中的行、列或元素。

        X[i,]指矩阵中的第i行,X[,j]指矩阵中的第j列,X[i,j]指第i行第j列的元素。

        选择多行或多列时,下标i和j可以数值型向量。

# 下标的使用
# 创建一个矩阵
x<-matrix(1:10,nrow=2)
x
# 矩阵x的第2行数据
x[2,]
# 矩阵x的第2列数据
x[,2]
# 矩阵x的第2行第4个元素
x[2,4]
# 矩阵x的第1行第4、5个元素
x[1,c(4,5)]

(3)数组

        数组(array)与矩阵类似,但维度可以大于2。数组可以通过array函数创建。形式如下:

        myarray<-array(vector,dimensions,dimnames)

        其中,vector是包含数据中数据的向量;dimensions是一个数值型的向量,给出了各个维度下标的最大值,而dimnames是可选的、各维度名称标签的列表。

        数组是矩阵的一个自然推广。它们在编写新的统计方法时可能很有用。和矩阵一样,数组中的数据也只能拥有一种模式。从数组中选取元素的方式与矩阵相同。

# 创建一个数组
dim1<-c('A1','A2')
dim2<-c('B1','B2','B3')
dim3<-c('C1','C2','C3','C4')
z<-array(1:24,dim=c(2,3,4),dimnames=list(dim1,dim2,dim3))
z

(4)数据框

        由于不同的列可以包含不同模式(数值型、字符型等)的数据,数据框的概念较矩阵来说更为一般。也是我们在R中最常处理的数据结构。

        数据框可通过函数data.frame()创建:

        mydata<-data.frame(col1,col2,col3,...)

        其中的列向量col1,col2,col3等可为任何数据类型。每一列的名称可有函数names指定。如下:

# 创建一个数据框
patientID<-c(1,2,3,4)
age<-c(25,34,28,52)
diabetes<-c('Type1','Type2','Type1','Type2')
status<-c('Poor','Improved','Excellent','Poor')
patientdata<-data.frame(patientID,age,diabetes,status)
patientdata

        每一列数据的模式必须唯一,不过我们可以将多个模式的不同列放在一起组成数据框。数据框与分析人员通常设想的数据集形态较为接近。

        选取数据框中元素的方式有若干种。可以使用切片格式,也可以直接指定列名。

# 切片法
patientdata[1:2]
# 指定列名
patientdata[c('diabetes','status')]
# $符号指定列名
patientdata$age
# 交叉表
table(patientdata$diabetes,patientdata$status)

        在每个变量名前都键入一次数据框名称相对比较麻烦,可以走一些捷径。两盒使用attach()和detach()或单独使用with()来简化代码。

        attach()函数可将数据框添加到R的搜索路径中。R在遇到一个变量名以后,将检查搜索路径中的数据框。detach()是将数据框从搜索路径中移除,与attach()函数配合使用。

summary(mtcars$mpg)
plot(mtcars$mpg,mtcars$disp)
plot(mtcars$mpg,mtcars$wt)

以上代码可以写成:

attach(mtcars)summary(mpg)plot(mpg,disp)plot(mpg,wt)
detach(mtcars)

        当名称相同的对象不止一个时,attach()的方法将会显得局限。attach()和detach()最好在分析一个单独的数据框,且不太可能有多个同名称对象时使用。

        另一种方式是函数with(),重写上述代码为:

with(mtcars,{print(summary(mpg))plot(mpg,disp)plot(mpg,wt)
})

        函数with()的局限性在于,赋值仅在此函数的括号内生效。如果要创建在with()结构以外存在的对象,使用特殊赋值符号<<-替代标准赋值符号<-即可,它可将对象保存到with()之外的全局换菌种。如下:

with(mtcars,{nokeepstats<-summary(mpg)keepstats<<-summary(mpg)
})
nokeepstats
keepstats

        相对于attach(),多数的R数据中更多推荐使用with()函数。

(5)因子

        变量可归结为名义型、有序型和连续型变量。

        名义型变量是没有顺序之分的类别变量。

        有序型边变量是一种顺序关系,而非数量关系。

        连续型变量可以呈现为某个范围内的任意值,并同时表示了顺序和数量。

        名义型变量和有序型变量在R中称为因子(factor)。因子在R中非常重要,因为它决定了数据的分析方式以及如何进行视觉呈现。

        factor()函数以一个整数向量的形式存储类别值,整数的取值范围是[1,...,k](其中k是名义变量中唯一值的个数),同时一个有字符串(原始值)组成的内部向量将映射到这些整数上。

        对于字符型向量,因子的水平默认依字母顺序创建,我们可以通过指定levels选项来覆盖默认排序。例如:status<-factor(status,order=TRUE,levels=c('Poor','Improved','Excellent')),各水平的赋值将为1=Poor、2=Improved、3=Excellent。请保证指定的水平与数据中的真实值相匹配,因为任何在数据中出现而未在参数中列举的数据都将设为缺失值。

patientID<-c(1,2,3,4)
age<-c(25,34,28,54)
diabetes<-c('Type1','Type2','Type1','Type1')
status<-c('Poor','Improved','Excellent','Poor')
# 将diabetes设为因子
diabetes<-factor(diabetes)
# 将status设为有序因子
status<-factor(status,order=TRUE)
# 创建数据框
patientdata<-data.frame(patientID,age,diabetes,status)
# 显示对象的结构
str(patientdata)
# 显示对象的统计概要
summary(patientdata)

(6)列表

        列表(list)是R的数据类型中最为复杂的一种。一般来说,列表就是一些对象的有序集合。列表允许整合若干不同类型的对象到一个对象名下。

g<-"my first list"
h<-c(25,26,18,39)
j<-matrix(1:10,nrow=5)
k<-c('one','two','three')
# 创建列表
mylist<-list(title=g,ages=h,j,k)
mylist

这篇关于R语言统计分析——数据集概念和数据结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047693

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验