数据预处理之白化-Whitening

2024-06-10 05:58

本文主要是介绍数据预处理之白化-Whitening,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论知识

随机向量的“零均值化”和“空间解相关”是最常用的两个预处理过程,其中“零均值化”比较简单,而“空间解相关”涉及一些矩阵的知识。
    设有均值为零的随机信号向量 x ,其自相关矩阵为

R_x=E[xx^T]\neq I

很明显, R_x 是对称矩阵,且是非负定的(所有特征值都大于或等于0)。
    现在,寻找一个线性变换 B 对 x 进行变换,即 y=Bx ,使得

R_y=BE[xx^T]B^T=I

上式的含义是:y的各分量是不相关的,即 E[y_i y_j]=\delta_{ij} 。通常将这个过程称为“空间解相关”、“空间白化”或“球化”。 B 称为空间解相关矩阵(空间白化矩阵、球化矩阵)。
    由 R_x 的性质可知,其存在特征值分解:

R_x = Q\Sigma Q^T

Q 是正交矩阵, \Sigma 是对角矩阵,其对角元素是 R_x 特征值。
    令
                                                              
                                                                                  B=Σ1/2QT
 则有                                                           R_y = (\Sigma^{-1/2} Q^T)Q \Sigma Q^T (\Sigma^{-1/2} Q^T)^T = I
因此,通过矩阵 B 线性变换后, y 的各个分量变得不相关了。
    对于 R_x 来说,特征值分解和奇异值分解是等价的,而奇异值分解的数值算法比特征值分解的数值算法具有更好的稳定性,因此一般都用奇异值分解来构造空间解相关矩阵 B 。
    应该注意到,“空间解相关”不能保证各分量信号之间的“独立性”,但它能够简化盲分离算法或改善分离算法的性能。
    最为熟知的例子是白噪声。元素 x_i 可以是一个时间序列在相继时间点 i=1,2,... 的值,且在噪声序列中没有时间上得相关性。术语“白”来自于白噪声的能谱在所有频率上是一个常数这一事实,就像含有各种颜色的白光谱一样。白化的本质就是去相关加缩放。
   由上式得到的 解相关矩阵 B 肯定不是唯一的白化矩阵。容易看到,任何矩阵 UB ( U 为正交矩阵)也是白化矩阵。 这是因为对  y=UBx  ,下式成立:

E[yy^T] = UBE[xx^T]B^TU^T = UIU^T = I

    一个重要的例子是矩阵 Q \Sigma^{-1/2} Q^T 。这也是一个白化矩阵,因为它是用正交矩阵 Q 左乘式矩阵B 得到的。这个矩阵称为 C_x 的逆均方根,并用 C_x^{-1/2} 表示,因为它来自于均方根概念向矩阵的标准推广。
理论知识参考:《盲信号处理》,《Independent Component Analysis》

Matlab代码实现

  C = cov(patches);M = mean(patches);[V,D] = eig(C);P = V * diag(sqrt(1./(diag(D) + 0.1))) * V';patches = bsxfun(@minus, patches, M) * P;
代码中patches表示矩阵或图像(灰度),代码中用到的函数均为matlab built-in function.











参考:  数据白化预处理



这篇关于数据预处理之白化-Whitening的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047371

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.