数据预处理之白化-Whitening

2024-06-10 05:58

本文主要是介绍数据预处理之白化-Whitening,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论知识

随机向量的“零均值化”和“空间解相关”是最常用的两个预处理过程,其中“零均值化”比较简单,而“空间解相关”涉及一些矩阵的知识。
    设有均值为零的随机信号向量 x ,其自相关矩阵为

R_x=E[xx^T]\neq I

很明显, R_x 是对称矩阵,且是非负定的(所有特征值都大于或等于0)。
    现在,寻找一个线性变换 B 对 x 进行变换,即 y=Bx ,使得

R_y=BE[xx^T]B^T=I

上式的含义是:y的各分量是不相关的,即 E[y_i y_j]=\delta_{ij} 。通常将这个过程称为“空间解相关”、“空间白化”或“球化”。 B 称为空间解相关矩阵(空间白化矩阵、球化矩阵)。
    由 R_x 的性质可知,其存在特征值分解:

R_x = Q\Sigma Q^T

Q 是正交矩阵, \Sigma 是对角矩阵,其对角元素是 R_x 特征值。
    令
                                                              
                                                                                  B=Σ1/2QT
 则有                                                           R_y = (\Sigma^{-1/2} Q^T)Q \Sigma Q^T (\Sigma^{-1/2} Q^T)^T = I
因此,通过矩阵 B 线性变换后, y 的各个分量变得不相关了。
    对于 R_x 来说,特征值分解和奇异值分解是等价的,而奇异值分解的数值算法比特征值分解的数值算法具有更好的稳定性,因此一般都用奇异值分解来构造空间解相关矩阵 B 。
    应该注意到,“空间解相关”不能保证各分量信号之间的“独立性”,但它能够简化盲分离算法或改善分离算法的性能。
    最为熟知的例子是白噪声。元素 x_i 可以是一个时间序列在相继时间点 i=1,2,... 的值,且在噪声序列中没有时间上得相关性。术语“白”来自于白噪声的能谱在所有频率上是一个常数这一事实,就像含有各种颜色的白光谱一样。白化的本质就是去相关加缩放。
   由上式得到的 解相关矩阵 B 肯定不是唯一的白化矩阵。容易看到,任何矩阵 UB ( U 为正交矩阵)也是白化矩阵。 这是因为对  y=UBx  ,下式成立:

E[yy^T] = UBE[xx^T]B^TU^T = UIU^T = I

    一个重要的例子是矩阵 Q \Sigma^{-1/2} Q^T 。这也是一个白化矩阵,因为它是用正交矩阵 Q 左乘式矩阵B 得到的。这个矩阵称为 C_x 的逆均方根,并用 C_x^{-1/2} 表示,因为它来自于均方根概念向矩阵的标准推广。
理论知识参考:《盲信号处理》,《Independent Component Analysis》

Matlab代码实现

  C = cov(patches);M = mean(patches);[V,D] = eig(C);P = V * diag(sqrt(1./(diag(D) + 0.1))) * V';patches = bsxfun(@minus, patches, M) * P;
代码中patches表示矩阵或图像(灰度),代码中用到的函数均为matlab built-in function.











参考:  数据白化预处理



这篇关于数据预处理之白化-Whitening的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047371

相关文章

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指