从反向传播过程看激活函数与权重初始化的选择对深度神经网络稳定性的影响

本文主要是介绍从反向传播过程看激活函数与权重初始化的选择对深度神经网络稳定性的影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前使用深度学习时一直对各种激活函数和权重初始化策略信手拈用,然而不能只知其表不知其里。若想深入理解为何选择某种激活函数和权重初始化方法卓有成效还是得回归本源,本文就从反向传播的计算过程来按图索骥。

为了更好地演示深度学习中的前向传播和反向传播,有必要图文结合,先按下面这个计算图造些数据。


在这里插入图片描述


这是一个输入只有单个样本、包含两个特征,两个隐藏层、分别带有2个神经元,以及一个输出的三层全连接神经网络。

输入和权重

输入 I n p u t Input Input (每行表示一个样本,每列表示一个特征)

X = [ x 1 , x 2 ] = [ 1 , − 1 ] X=[x_1,x_2]=[1,-1] X=[x1,x2]=[1,1]

标签 y = [ 1 ] y=[1] y=[1]

权重 W W W (每列对应一个神经元,行数等于样本特征数)

W 1 = [ w 1 w 3 w 2 w 4 ] = [ 1 − 1 − 2 1 ] \begin{align} W_1 & = \begin{bmatrix} w_1 & w_3 \\ w_2 & w_4 \\ \end{bmatrix} \hspace{100cm} \\ & = \begin{bmatrix} 1 & -1 \\ -2 & 1 \\ \end{bmatrix} \end{align} W1=[w1w2w3w4]=[1211]

W 2 = [ w 5 w 7 w 6 w 8 ] = [ 2 − 2 − 1 − 1 ] \begin{align} W_2 & = \begin{bmatrix} w_5 & w_7 \\ w_6 & w_8 \\ \end{bmatrix} \hspace{100cm} \\ & = \begin{bmatrix} 2 & -2 \\ -1 & -1 \\ \end{bmatrix} \end{align} W2=[w5w6w7w8]=[2121]

W 3 = [ w 9 w 11 w 10 w 12 ] = [ 3 − 1 − 1 4 ] \begin{align} W_3 & = \begin{bmatrix} w_9 & w_{11} \\ w_{10} & w_{12} \\ \end{bmatrix} \hspace{100cm} \\ & = \begin{bmatrix} 3 & -1 \\ -1 & 4 \\ \end{bmatrix} \end{align} W3=[w9w10w11w12]=[3114]

偏置 b b b (长度等于神经元数量)

b 1 = [ b 11 , b 12 ] = [ 1 , 0 ] b_1=[b_{11},b_{12}]=[1,0] b1=[b11,b12]=[1,0]

b 2 = [ b 21 , b 22 ] = [ 0 , 0 ] b_2=[b_{21},b_{22}]=[0,0] b2=[b21,b22]=[0,0]

b 3 = [ − 2 ] b_3=[-2] b3=[2]

前向传播过程

前向传播就是从输入经隐藏层到输出层的计算过程。

从输入到第一个隐藏层的计算

z 1 = w 1 ⋅ x 1 + w 2 ⋅ x 2 + b 11 = 4 z_1=w_1 · x_1 + w_2 · x_2 + b_{11}=4 z1=w1x1+w2x2+b11=4

z 2 = w 3 ⋅ x 1 + w 4 ⋅ x 2 + b 12 = − 2 z_2=w_3 · x_1 + w_4 · x_2 + b_{12}=-2 z2=w3x1+w4x2+b12=2

a 11 = σ ( z 1 ) = 0.9820 a_{11}=\sigma(z_1)=0.9820 a11=σ(z1)=0.9820

a 12 = σ ( z 2 ) = 0.1192 a_{12}=\sigma(z_2)=0.1192 a12=σ(z2)=0.1192

其中, σ = s i g m o i d = 1 1 + e − x \sigma=sigmoid={1 \over{1+e^{-x}}} σ=sigmoid=1+ex1 ,其导数为 σ ′ = s i g m o i d ∗ ( 1 − s i g m o i d ) = 1 1 + e − x − 1 ( 1 + e − x ) 2 \sigma'=sigmoid * (1 - sigmoid)={1 \over{1+e^{-x}}}-{1 \over{(1+e^{-x}})^2} σ=sigmoid(1sigmoid)=1+ex1(1+ex)21

隐藏层 H 1 = [ a 11 , a 12 ] H_1=[a_{11},a_{12}] H1=[a11,a12] ,作为第二个隐藏层的输入。

从第一个隐藏层到第二个隐藏层的计算

z 3 = w 5 ⋅ a 11 + w 6 ⋅ a 12 + b 21 = 1.8448 z_3=w_5 · a_{11} + w_6 · a_{12} + b_{21}=1.8448 z3=w5a11+w6a12+b21=1.8448

z 4 = w 7 ⋅ a 11 + w 8 ⋅ a 12 + b 22 = − 2.0832 z_4=w_7 · a_{11} + w_8 · a_{12} + b_{22}=-2.0832 z4=w7a11+w8a12+b22=2.0832

a 21 = σ ( z 3 ) = 0.8635 a_{21}=\sigma(z_3)=0.8635 a21=σ(z3)=0.8635

a 22 = σ ( z 4 ) = 0.1107 a_{22}=\sigma(z_4)=0.1107 a22=σ(z4)=0.1107

隐藏层 H 2 = [ a 21 , a 22 ] H_2=[a_{21},a_{22}] H2=[a21,a22] ,作为输出层的输入。

从第二个隐藏层到输出层的计算

y ^ = w 9 ⋅ a 21 + w 10 ⋅ a 22 + b 3 = 0.4798 \hat{y}=w_9 · a_{21} + w_{10} · a_{22} + b_{3}=0.4798 y^=w9a21+w10a22+b3=0.4798

一个样本的损失: L = ( y ^ − y ) 2 = y ^ 2 + y 2 − 2 y ^ y = 0.2706 L=(\hat{y}-y)^2=\hat{y}^2+y^2-2\hat{y}y=0.2706 L=(y^y)2=y^2+y22y^y=0.2706

计算结果如下:


在这里插入图片描述


反向传播过程

以求 w 1 w_1 w1 的偏导数为例,其他可仿照之,利用链式法则计算梯度。
∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ L ∂ z 1 = x 1 ∂ L ∂ z 1 ( 1 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial L \over \partial z_1} \hspace{100cm} \\ &=x_1 {\partial L \over \partial z_1} \ \ \ \ \ (1) \end{align} w1L=w1z1z1L=x1z1L     (1)

∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ a 11 ∂ z 1 ∂ L ∂ a 11 = x 1 σ ′ ( z 1 ) ∂ L ∂ a 11 ( 2 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial a_{11} \over \partial z_1} {\partial L \over \partial a_{11}} \hspace{100cm} \\ &=x_1 \sigma'(z_1) {\partial L \over \partial a_{11}} \ \ \ \ \ (2) \end{align} w1L=w1z1z1a11a11L=x1σ(z1)a11L     (2)

∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ a 11 ∂ z 1 ( ∂ z 3 ∂ a 11 ∂ L ∂ z 3 + ∂ z 4 ∂ a 11 ∂ L ∂ z 4 ) = x 1 σ ′ ( z 1 ) [ w 5 ∂ L ∂ z 3 + w 7 ∂ L ∂ z 4 ] ( 3 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial a_{11} \over \partial z_1} ({\partial z_3 \over \partial a_{11}} {\partial L \over \partial z_{3}} + {\partial z_4 \over \partial a_{11}} {\partial L \over \partial z_{4}}) \hspace{100cm} \\ &=x_1 \sigma'(z_1) [w_5 {\partial L \over \partial z_{3}} + w_7 {\partial L \over \partial z_{4}}] \ \ \ \ \ (3) \end{align} w1L=w1z1z1a11(a11z3z3L+a11z4z4L)=x1σ(z1)[w5z3L+w7z4L]     (3)

∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ a 11 ∂ z 1 ( ∂ z 3 ∂ a 11 ∂ a 21 ∂ z 3 ∂ L ∂ a 21 + ∂ z 4 ∂ a 11 ∂ a 22 ∂ z 4 ∂ L ∂ a 22 ) = x 1 σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) ∂ L ∂ a 21 + w 7 σ ′ ( z 4 ) ∂ L ∂ a 22 ] ( 4 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial a_{11} \over \partial z_1} ({\partial z_3 \over \partial a_{11}} {\partial a_{21} \over \partial z_{3}} {\partial L \over \partial a_{21}} + {\partial z_4 \over \partial a_{11}} {\partial a_{22} \over \partial z_{4}} {\partial L \over \partial a_{22}}) \hspace{100cm} \\ &=x_1 \sigma'(z_1) [w_5 \sigma'(z_3) {\partial L \over \partial a_{21}} + w_7 \sigma'(z_4) {\partial L \over \partial a_{22}}] \ \ \ \ \ (4) \end{align} w1L=w1z1z1a11(a11z3z3a21a21L+a11z4z4a22a22L)=x1σ(z1)[w5σ(z3)a21L+w7σ(z4)a22L]     (4)

∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ a 11 ∂ z 1 ( ∂ z 3 ∂ a 11 ∂ a 21 ∂ z 3 ∂ y ^ ∂ a 21 ∂ L ∂ y ^ + ∂ z 4 ∂ a 11 ∂ a 22 ∂ z 4 ∂ y ^ ∂ a 22 ∂ L ∂ y ^ ) = x 1 σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) w 9 ∂ L ∂ y ^ + w 7 σ ′ ( z 4 ) w 10 ∂ L ∂ y ^ ] ( 5 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial a_{11} \over \partial z_1} ({\partial z_3 \over \partial a_{11}} {\partial a_{21} \over \partial z_{3}} {\partial \hat{y} \over \partial a_{21}} {\partial L \over \partial \hat{y}} + {\partial z_4 \over \partial a_{11}} {\partial a_{22} \over \partial z_{4}} {\partial \hat{y} \over \partial a_{22}} {\partial L \over \partial \hat{y}}) \hspace{100cm} \\ &=x_1 \sigma'(z_1) [w_5 \sigma'(z_3) w_9 {\partial L \over \partial \hat{y}} + w_7 \sigma'(z_4) w_{10} {\partial L \over \partial \hat{y}}] \ \ \ \ \ (5) \end{align} w1L=w1z1z1a11(a11z3z3a21a21y^y^L+a11z4z4a22a22y^y^L)=x1σ(z1)[w5σ(z3)w9y^L+w7σ(z4)w10y^L]     (5)

∂ L ∂ w 1 = x 1 σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) w 9 ∂ L ∂ y ^ + w 7 σ ′ ( z 4 ) w 10 ∂ L ∂ y ^ ] = 1 ∗ 0.0177 ∗ [ 2 ∗ 0.1179 ∗ 3 ∗ ( 2 y ^ − 2 y ) + ( − 2 ∗ 0.0985 ∗ − 1 ∗ ( 2 y ^ − 2 y ) ) ] = − 0.0166 ( 6 ) \begin{align} {\partial L \over \partial w_1} & = x_1 \sigma'(z_1) [w_5 \sigma'(z_3) w_9 {\partial L \over \partial \hat{y}} + w_7 \sigma'(z_4) w_{10} {\partial L \over \partial \hat{y}}] \hspace{100cm} \\ &=1*0.0177*[2*0.1179*3*(2 \hat{y}-2y) + (-2*0.0985*-1*(2 \hat{y}-2y))] \\ &=-0.0166 \ \ \ \ \ (6) \end{align} w1L=x1σ(z1)[w5σ(z3)w9y^L+w7σ(z4)w10y^L]=10.0177[20.11793(2y^2y)+(20.09851(2y^2y))]=0.0166     (6)

与pytorch计算结果相同。

import torch
from torch import nn#输入与权重
X=torch.tensor([[1.0,-1.0]])
y=torch.tensor([1.0])
W1=torch.tensor([[1.0,-1.0],[-2.0,1.0]],requires_grad=True)
b1=torch.tensor([1.0,0.0],requires_grad=True)
W2=torch.tensor([[2.0,-2.0],[-1.0,-1.0]],requires_grad=True)
b2=torch.tensor([0.0,0.0],requires_grad=True)
W3=torch.tensor([[3.0],[-1.0]],requires_grad=True)
b3=torch.tensor([-2.0],requires_grad=True)#隐藏层1
z1=torch.matmul(X,W1)+b1
a1=torch.sigmoid(z1) #隐藏层2
z2=torch.matmul(a1,W2)+b2
a2=torch.sigmoid(z2) #输出层
y_hat=torch.matmul(a2,W3)+b3#损失函数
loss=nn.MSELoss(reduction='none')#计算损失
L=loss(y_hat,y).sum()
L.backward()
print(W1.grad)

在这里插入图片描述


要想求 ∂ L ∂ w 1 {\partial L \over \partial w_1} w1L ,我们先看式 ( 1 ) (1) (1) ∂ z 1 ∂ w 1 {\partial z_1 \over \partial w_1} w1z1 是可以立刻得出的,因为它就是 w 1 w_1 w1 前面连接的输入的值。实际上对于任何权重,其偏导数 ∂ w {\partial w} w 表达式的第一项都是可以通过其连接的输入立刻获得(即利用前向传播过程中存储的每个神经元的中间结果),比如对于靠后的 w 9 w_9 w9 ,其输入为 a 21 a_{21} a21 ,展开得:

a 21 = σ [ w 5 ⋅ σ ( w 1 ⋅ x 1 + w 2 ⋅ x 2 + b 11 ) + w 6 ⋅ σ ( w 3 ⋅ x 1 + w 4 ⋅ x 2 + b 12 ) + b 21 ] a_{21}=\sigma[w_5 · \sigma(w_1 · x_1 + w_2 · x_2 + b_{11}) + w_6 · \sigma(w_3 · x_1 + w_4 · x_2 + b_{12}) + b_{21}] a21=σ[w5σ(w1x1+w2x2+b11)+w6σ(w3x1+w4x2+b12)+b21]

a 21 a_{21} a21 σ ( W 2 σ ( W 1 X + b 1 ) + b 2 ) ( 7 ) \sigma(W_2 \sigma(W_1X+b1)+b2) \ \ \ \ \ (7) σ(W2σ(W1X+b1)+b2)     (7) 结果其中之一。

可以看出,每一部分都会经激活函数,而对于 s i g m o i d sigmoid sigmoid 激活函数来说,第一项的计算可能会是无穷小,因此可能会引发梯度消失问题,而使用Relu则可以 减轻困扰以往神经网络的梯度消失问题。


在这里插入图片描述

sigmoid图像

在这里插入图片描述

Relu图像

继续回到对 ∂ L ∂ w 1 {\partial L \over \partial w_1} w1L 的讨论上。现在还要求 ∂ L ∂ z 1 {\partial L \over \partial z_1} z1L ,那么 ∂ L ∂ z 1 {\partial L \over \partial z_1} z1L 如何求解呢?这就是反向传播要解决的问题了。

我们再回看一下式 ( 2 ) − ( 5 ) (2)-(5) (2)(5) 中的 ∂ L ∂ z 1 {\partial L \over \partial z_1} z1L ,列示如下:

∂ L ∂ z 1 = σ ′ ( z 1 ) ∂ L ∂ a 11 {\partial L \over \partial z_1} = \sigma'(z_1) {\partial L \over \partial a_{11}} z1L=σ(z1)a11L

∂ L ∂ z 1 = σ ′ ( z 1 ) [ w 5 ∂ L ∂ z 3 + w 7 ∂ L ∂ z 4 ] {\partial L \over \partial z_1} = \sigma'(z_1) [w_5 {\partial L \over \partial z_{3}} + w_7 {\partial L \over \partial z_{4}}] z1L=σ(z1)[w5z3L+w7z4L]

∂ L ∂ z 1 = σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) ∂ L ∂ a 21 + w 7 σ ′ ( z 4 ) ∂ L ∂ a 22 ] {\partial L \over \partial z_1} = \sigma'(z_1) [w_5 \sigma'(z_3) {\partial L \over \partial a_{21}} + w_7 \sigma'(z_4) {\partial L \over \partial a_{22}}] z1L=σ(z1)[w5σ(z3)a21L+w7σ(z4)a22L]

∂ L ∂ z 1 = σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) w 9 ∂ L ∂ y ^ + w 7 σ ′ ( z 4 ) w 10 ∂ L ∂ y ^ ] {\partial L \over \partial z_1} = \sigma'(z_1) [w_5 \sigma'(z_3) w_9 {\partial L \over \partial \hat{y}} + w_7 \sigma'(z_4) w_{10} {\partial L \over \partial \hat{y}}] z1L=σ(z1)[w5σ(z3)w9y^L+w7σ(z4)w10y^L]

可以看出,从前往后计算 ∂ L ∂ z 1 {\partial L \over \partial z_1} z1L 会不太容易,因为前面项总会依赖后面项的计算结果,所以得先一直往后计算。

但反过来就简单多了,我们可以从最后一项出发,对于最初的计算图,最后一项是输出值关于损失的导数 ∂ L ∂ y ^ {\partial L \over \partial \hat{y}} y^L ,这个可以由确定的损失函数求得。

有了 ∂ L ∂ y ^ {\partial L \over \partial \hat{y}} y^L ,可以通过 w 9 、 w 10 w_9、w_{10} w9w10 求得 ∂ L ∂ a 21 、 ∂ L ∂ a 22 {\partial L \over \partial a_{21}}、 {\partial L \over \partial a_{22}} a21La22L

有了 ∂ L ∂ a 21 、 ∂ L ∂ a 22 {\partial L \over \partial a_{21}}、 {\partial L \over \partial a_{22}} a21La22L ,可以通过 w 5 、 w 7 w_5、w_7 w5w7 求得 ∂ L ∂ a 11 {\partial L \over \partial a_{11}} a11L (别忘了中间还要乘以一个 $\sigma’(z) $ , z z z 只是一个常量,也可以从前向传播存储的中间结果获得) 。

再回味一下上面这个从后往前的计算过程,是不是跟前向传播很相似?这就是梯度的反向传播!与前向传播的图示比对如下:


在这里插入图片描述

反向传播

在这里插入图片描述

前向传播

其中:

∂ L ∂ a 21 = w 9 ∂ L ∂ y ^ ( 8 ) {\partial L \over \partial a_{21}}=w_9 {\partial L \over \partial \hat{y}} \ \ \ \ \ (8) a21L=w9y^L     (8)

∂ L ∂ a 22 = w 10 ∂ L ∂ y ^ ( 9 ) {\partial L \over \partial a_{22}}=w_{10} {\partial L \over \partial \hat{y}} \ \ \ \ \ (9) a22L=w10y^L     (9)

∂ L ∂ a 11 = w 5 ∂ L ∂ z 3 + w 7 ∂ L ∂ z 4 ( 10 ) {\partial L \over \partial a_{11}}=w_5 {\partial L \over \partial z_{3}} + w_7 {\partial L \over \partial z_{4}} \ \ \ \ \ (10) a11L=w5z3L+w7z4L     (10)

∂ L ∂ z 3 = σ ′ ( z 3 ) ∂ L ∂ a 21 {\partial L \over \partial z_{3}}=\sigma'(z_3) {\partial L \over \partial a_{21}} z3L=σ(z3)a21L

∂ L ∂ z 4 = σ ′ ( z 4 ) ∂ L ∂ a 22 {\partial L \over \partial z_{4}}=\sigma'(z_4) {\partial L \over \partial a_{22}} z4L=σ(z4)a22L

∂ L ∂ z 1 = σ ′ ( z 1 ) ∂ L ∂ a 11 {\partial L \over \partial z_{1}}=\sigma'(z_1) {\partial L \over \partial a_{11}} z1L=σ(z1)a11L

这个计算过程和前向传播很类似(尤其是式 ( 10 ) (10) (10) ),所以称之为反向传播。

从式 ( 5 ) 、 ( 7 ) (5)、(7) (5)(7) 可以看出,每个权重的偏导数都会涉及到一连串 w w w 与激活函数导数的乘积以及权重与输入的乘积,试想,如果没有一个良好初始化的权重,这么多 w w w 相乘很可能会引起梯度爆炸或梯度消失等参数不稳定问题。

比如方差为1的正态随机矩阵和一个初始权重矩阵相乘,会引起梯度爆炸:

W = torch.normal(0, 1, size=(5,5)) 
print('初始权重矩阵 \n',W) 
for i in range(100):W = torch.matmul(W,torch.normal(0, 1, size=(5, 5)))print('100个矩阵相乘后 \n', W)

在这里插入图片描述


这篇关于从反向传播过程看激活函数与权重初始化的选择对深度神经网络稳定性的影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047049

相关文章

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

SpringCloud之LoadBalancer负载均衡服务调用过程

《SpringCloud之LoadBalancer负载均衡服务调用过程》:本文主要介绍SpringCloud之LoadBalancer负载均衡服务调用过程,具有很好的参考价值,希望对大家有所帮助,... 目录前言一、LoadBalancer是什么?二、使用步骤1、启动consul2、客户端加入依赖3、以服务

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.