基于睡眠声音评估睡眠质量

2024-06-10 00:04
文章标签 质量 评估 声音 睡眠

本文主要是介绍基于睡眠声音评估睡眠质量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       随着健康意识的增强,人们越来越关注睡眠质量。确保获得充足的高质量睡眠对于维持身体健康和心理平衡至关重要。专业的睡眠状态测量主要通过多导睡眠图(PSG)进行。然而,PSG会给受试者带来显著的身体负担,并且在没有专业设施或医院的情况下很难进行测量。近年来,为了便于睡眠评估,开发了使用可穿戴设备的评估方法。但是,通过智能手表所能获得的信息是有限的,通常包括加速度和心率等数据。虽然基于脑电图(EEG)的睡眠监测提供高准确度,但需要佩戴头戴设备,即使是单通道EEG耳机,也带来了显著的负担。

     与EEG或压力传感器不同,基于声音的方法是非接触式的,并且容易收集。睡眠声音指的是睡眠期间与生物活动相关的声音,例如打鼾、身体移动、咳嗽以及环境噪音。使用睡眠声音的方法比传统方法有优势,例如非接触式,并且能够检测许多生物活动。传统上,基于睡眠声音的睡眠评估主要集中于睡眠呼吸暂停综合征的检测,而关于睡眠质量评估的研究仍然有限。在现有的基于深度学习的使用睡眠声音的睡眠质量估计中,评估的基础是一个黑箱。

      因此,我们提出一个基于机器学习使用睡眠声音的睡眠质量分类模型,该模型能够提供理由,例如“由于睡眠期间频繁翻身导致睡眠质量差”。通过提供理由,可能有助于提高用户的睡眠质量。

1 方法

     通过聚类睡眠声音事件,提出了一种高度准确和可解释的睡眠质量分类方法。聚类睡眠声音事件有助于解释每个事件,从而能够识别对睡眠质量分类重要的事件。通过聚类睡眠声音事件,可以更容易地为每个事件赋予意义,从而识别对睡眠质量分类至关重要的事件。

  • 睡眠声音事件提取: 从整夜连续录制的音频中提取睡眠声音事件例如打鼾、身体动作、咳嗽等。我们采用Kleinberg的突发提取方法来提取睡眠声音事件突发提取方法基于这样一个假设:波形的幅度遵循正态分布。它识别出那些被估计为由具有较大方差的正态分布持续生成的段落,与静止噪声相比。
  • 频域转换: 使用快速傅里叶变换 (FFT) 将提取的声音事件转换到频域,并计算功率谱作为变分自编码器(VAE)的输入向量。
  • 潜在表示提取: 使用变分自编码器 (VAE) 对功率谱进行学习,得到每个事件的潜在表示。我们对功率谱进行了归一化,使其总和等于一,将其视为概率分布,并使用Kullback-Leibler散度(KLD)作为VAE中的重建误差项。
  • 事件聚类: 使用高斯混合模型 (GMM) 对潜在表示进行聚类,将每个事件分配到不同的类别中,并计算每个事件属于每个类别的概率。
  • 数据增强: 通过对事件序列进行多次随机采样,生成不同的事件序列,模拟增加天数,从而扩充训练数据集。
  • 睡眠满意度分类: 使用长短期记忆网络 (LSTM) 对经过数据增强的事件序列进行训练,预测睡眠满意度。要估计的主观评估是“满意度”,这是一个在“满意”和“不满意”之间的二元分类,不包括“中性”。
  • 时间SHAP解释: 使用时间SHAP方法分析LSTM模型,解释睡眠质量分类中重要的事件类型和时间特征,例如身体动作、呼吸声、噪声等。

2 实验

2.1 数据集

  • 研究使用了来自不同年龄段的参与者在家录制的睡眠声音数据,持续一个月。
  • 使用智能手机 (Zenfone Live Android 7.0) 进行录音。
  • 参与者填写了问卷,包括睡前和醒后的睡眠满意度评分。睡前,他们提供了有关身体和心理疲劳、疾病或伤害的存在等问题的答案。醒来后,他们对睡眠满意度和睡眠期间的室内环境进行了评分。睡眠满意度按五点评分:“非常满意”、“满意”、“中性”、“不满意”和“非常不满意”。
  • 排除了使用空调设备或有感冒/受伤的参与者数据。
  • 选择了三位睡眠满意度差异较大的参与者进行分析。

2.2 实验方法

2.2.1 预处理

  • 使用 Kleinberg’s burst extraction 方法从音频中提取睡眠声音事件。
  • 将声音事件转换为频域,并使用功率谱作为 VAE 的输入。
  • 对连续的声音事件进行下采样,以确保 LSTM 输入序列长度适中。

2.2.2 睡眠声音事件聚类

使用 VAE 学习睡眠声音事件的潜在表示。

使用 GMM 对潜在表示进行聚类,并计算每个事件属于每个聚类的概率。

2.2.3 数据增强

  • 通过对事件序列进行多次随机采样,模拟增加天数,以增加训练数据量。

2.2.4 睡眠满意度分类

  • 使用 LSTM 对睡眠满意度进行分类,将每个事件属于每个聚类的概率作为输入。
  • LSTM 使用 sequence-to-one 方法,将一整晚的事件序列转换为二分类结果(满意或不满意)。

2.2.5解释

  • 使用 TimeSHAP 分析 LSTM 模型,解释每个聚类对睡眠满意度分类的影响。
  • 分析不同时间段 (早、中、晚) 的重要聚类和特征。

2.3 实验结果

2.3.1 分类结果

  • 提出的方法在所有参与者中都取得了较高的睡眠满意度分类准确率,最高达到 94.8%。
  • 与传统的 VAE+LSTM 方法相比,提出的方法的准确率更高或相当。

2.3.2 解释结果

  • 不同满意度下,重要聚类存在显著差异。
  • 个体之间存在睡眠特征差异,例如:

参与者 1:满意时,呼吸声更重要;不满意时,深呼吸声更重要,可能与睡眠呼吸暂停有关。

参与者 2 和 3:噪声在所有时间段都对睡眠产生负面影响。

3 结论

实验结果表明,所提出的方法能够在对夜间的睡眠满意度进行分类时实现高准确度。此外展示了基于睡眠满意度的聚类重要性存在显著差异,证明了所提出的方法能够分析个体的睡眠特征,并识别改进的领域。虽然在实验中获得高准确度,但未来还面临以挑战

  • 第一项挑战在于个体间最优VAE维度和聚类数量的显著变化。在部署使用所提出方法的睡眠评估应用时,将需要有效的调整方法。
  • 第二项挑战涉及睡眠声音事件的手动标记。由于即使是相同事件,不同个体之间的声音也存在差异,因此需要为每个个体标记睡眠声音事件。在大规模部署时,手动标记变得困难。因此,需要通过构建事件分类器和利用迁移学习等方法来简化标记过程。

4相关知识

4.1 多导睡眠图(Polysomnography, PSG)

PSG是监测睡眠情况的最重要的辅助诊断工具,能够同时监测人体在睡眠过程中的多种生理信号和生物电信号。具体来说,PSG可以监测脑电图(EEG)、眼动电图(EOG)、肌电图(EMG)、心电图(ECG)、呼吸动度、血压血氧饱和度以及腿动多项生理指标,并能对被检查者白天和夜间行为进行同步的视频记录。

4.2 基于脑电图(EEG)的睡眠监测

脑电图(EEG)是研究睡眠的一个非常重要的工具。脑电信号中包含了大量的生理与病理信息,现代EEG技术(结合其他神经科学工具)在理解非快速眼动(NREM)和快速眼动(REM)睡眠的复杂组织和功能方面具有重要作用。

这篇关于基于睡眠声音评估睡眠质量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046677

相关文章

python写个唤醒睡眠电脑的脚本

《python写个唤醒睡眠电脑的脚本》这篇文章主要为大家详细介绍了如何使用python写个唤醒睡眠电脑的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 环境:win10python3.12问题描述:怎么用python写个唤醒睡眠电脑的脚本?解决方案:1.唤醒处于睡眠状

PR曲线——一个更敏感的性能评估工具

在不均衡数据集的情况下,精确率-召回率(Precision-Recall, PR)曲线是一种非常有用的工具,因为它提供了比传统的ROC曲线更准确的性能评估。以下是PR曲线在不均衡数据情况下的一些作用: 关注少数类:在不均衡数据集中,少数类的样本数量远少于多数类。PR曲线通过关注少数类(通常是正类)的性能来弥补这一点,因为它直接评估模型在识别正类方面的能力。 精确率与召回率的平衡:精确率(Pr

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

安卓开发板_联发科MTK开发评估套件串口调试

串口调试 如果正在进行lk(little kernel ) 或内核开发,USB 串口适配器( USB 转串口 TTL 适配器的简称)对于检查系统启动日志非常有用,特别是在没有图形桌面显示的情况下。 1.选购适配器 常用的许多 USB 转串口的适配器,按芯片来分,有以下几种: CH340PL2303CP2104FT232 一般来说,采用 CH340 芯片的适配器,性能比较稳定,价

【无线通信发展史⑧】测量地球质量?重力加速度g的测量?如何推导单摆周期公式?地球半径R是怎么测量出来的?

前言:用这几个问答形式来解读下我这个系列的来龙去脉。如果大家觉得本篇文章不水的话希望帮忙点赞收藏加关注,你们的鼓舞是我继续更新的动力。 我为什么会写这个系列呢? 首先肯定是因为我本身就是一名从业通信者,想着更加了解自己专业的知识,所以更想着从头开始了解通信的来源以及在每一个时代的发展进程。 为什么会从头开始写通信? 我最早是学习了中华上下五千年,应该说朝代史,这个算个人兴趣,从夏

提升汽车制造质量:矫平技术在车门平整化中的应用

汽车制造业对每一个部件的精细度都有着极高的要求,尤其是车门这样的关键组件。车门不仅需要提供良好的密封性,还要在外观上展现出车辆的高端品质。然而,生产过程中的不平整问题往往成为提升制造质量的障碍。矫平技术的应用,为解决这一问题提供了有效的手段。 车门平整度的重要性 车门的平整度对于车辆的整体性能和美观至关重要。不平整的车门可能导致密封不良、噪音增大,甚至影响车门的正常开启和关闭。因此,确保车门的

运动耳机哪个牌子的质量好?五款口碑绝佳机型安利!

​喜欢户外活动的你,肯定是个有格调的人。想象一下,如果在户外的时候,能戴上一款耳机,不仅跟环境搭,还能让你享受到超棒的音乐,那感觉得多爽!开放式耳机就是为这个目的设计的,它不塞耳朵,戴着更舒服,音质也棒,让你在户外能更好地感受到周围自然的声音。这耳机现在超受欢迎,作为一个既爱户外又爱数码的发烧友,我自己也试过不少款,它们真的给我的户外探险加了不少分。接下来,我会跟大家分享这些耳机的亮点,帮你挑出自

三文带你轻松上手鸿蒙的AI语音03-文本合成声音

三文带你轻松上手鸿蒙的AI语音03-文本合成声音 前言 接上文 三文带你轻松上手鸿蒙的AI语音02-声音文件转文本 HarmonyOS NEXT 提供的AI 文本合并语音功能,可以将一段不超过10000字符的文本合成为语音并进行播报。 场景举例 手机在无网状态下,系统应用无障碍(屏幕朗读)接入文本转语音能力,为视障人士提供播报能力。类似微信读书,可以实现将文章内容通过语音朗读,可以

随着人们网络安全意识提高,软件架构设计与评估也成为重中之重

目录 案例 【题目】 【问题 1】(13 分) 【问题 2】(12分) 【答案】 【问题 1】答案 【问题 2】答案 相关推荐 案例         阅读以下关于软件架构设计与评估的叙述,回答问题 1 和问题 2。 【题目】         某电子商务公司为正更好地管理用户,提升企业销售业绩,拟开发一套用户管理系统。该系统的基本功能是根据用户的消费级别、消费历史、信

ubuntu24.04 为什么扬声器没有声音,但是戴上耳机有声音

扬声器在 Ubuntu 24.04 下没有声音,但耳机有声音,可能是由于以下几个原因造成的: 1. 输出设备设置问题 系统可能将默认输出设备设置为耳机,而非扬声器。你可以检查或更改音频输出设备: 打开“设置” -> “声音”。在“输出”部分,查看默认输出设备是否是扬声器。如果不是,请手动选择扬声器作为输出设备。 2. 静音或音量设置问题 扬声器的音量可能被设置为静音或过低: 在“声音”