如何在隔离环境中设置 LocalAI 以实现 GPU 驱动的文本嵌入

2024-06-09 23:52

本文主要是介绍如何在隔离环境中设置 LocalAI 以实现 GPU 驱动的文本嵌入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:来自 Elastic Valeriy Khakhutskyy

你是否想在 Elasticsearch 向量数据库之上构建 RAG 应用程序?你是否需要对大量数据使用语义搜索?你是否需要在隔离环境中本地运行?本文将向你展示如何操作。

Elasticsearch 提供了多种方法来为你的数据创建嵌入以进行对称搜索。最流行的方法之一是将 Elasticsearch open inference API 与 OpenAI、Cohere 或 Hugging Face 模型结合使用。这些平台支持许多可以在 GPU 上运行的大型、强大的嵌入模型。但是,第三方嵌入服务不适用于隔离系统,或者对有隐私问题和监管要求的客户不开放。

或者,你可以使用 ELSER 和 E5 在本地计算嵌入。这些嵌入模型在 CPU 上运行,并针对速度和内存使用进行了优化。它们也适用于隔离系统,可以在云中使用。但是,这些模型的性能不如在 GPU 上运行的模型。

如果你可以在本地计算数据的嵌入,那不是很棒吗?使用 LocalAI,你就可以做到这一点。LocalAI 是一个与 OpenAI API 兼容的免费开源推理服务器。它支持使用多个后端进行模型推理,包括用于嵌入的 Sentence Transformers 和用于文本生成的 llama.cpp。LocalAI 还支持 GPU 加速,因此你可以更快地计算嵌入。

本文将向你展示如何使用 LocalAI 计算数据的嵌入。我们将引导你完成设置 LocalAI、配置它以计算数据的嵌入以及运行它以生成嵌入的过程。你可以在笔记本电脑、隔离系统或任何需要计算嵌入的地方运行它。

我引起了你的兴趣吗?让我们开始吧!

步骤 1:使用 docker-compose 设置 LocalAI

要开始使用 LocalAI,你需要在计算机上安装 Docker 和 docker-compose。根据你的操作系统,你可能还需要安装 NVIDIA Container Toolkit 以在 Docker 容器内提供 GPU 支持。

旧版本不支持 NVIDIA 运行时指令,因此请确保安装了最新版本的 docker-compose:

sudo curl -L https://github.com/docker/compose/releases/download/v2.26.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

检查 docker-compose 的版本:

docker-compose --version

你需要使用以下 docker-compose.yaml 配置文件

# file: docker-compose.yaml
services:localai:image: localai/localai:latest-aio-gpu-nvidia-cuda-12container_name: localaienvironment:- MODELS_PATH=/models- THREADS=8ports:- "8080:8080"volumes:- $HOME/models:/modelstty: truestdin_open: truerestart: alwaysdeploy:resources:reservations:devices:- driver: nvidiacount: allcapabilities: [gpu]

注意

  1. 我们将 $HOME/models 目录挂载到容器内的 /models 目录。这是模型的存储位置。你需要调整要存储模型的目录的路径。
  2. 我们指定了用于推理的线程数和要使用的 GPU 数量。你可以根据硬件配置调整这些值。

第 2 步:配置 LocalAI 以使用 Sentence Transformers 模型

在本教程中,我们将使用 mixedbread-ai/mxbai-embed-large-v1,它目前在 MTEB 排行榜上排名第 4。但是,任何可以由 sentence-transformers 库加载的嵌入模型都可以以相同的方式工作。

创建目录 $HOME/models 和配置文件 $HOME/models/mxbai-embed-large-v1.yaml,内容如下:

# file: mxbai-embed-large-v1.yaml
name: mxbai-embed-large-v1 
backend: sentencetransformers
embeddings: true
parameters:model: mixedbread-ai/mxbai-embed-large-v1

步骤 3:启动 LocalAI 服务器

通过运行以下命令以分离模式启动 Docker 容器

docker-compose up -d

从你的 $HOME 目录。

通过运行 docker-compose ps 验证容器是否已正确启动。检查 localai 容器是否处于启动状态。

你应该看到类似于以下内容的输出:

~$ docker-compose ps
WARN[0000] /home/valeriy/docker-compose.yaml: `version` is obsolete 
NAME      IMAGE                                           COMMAND                  SERVICE   CREATED              STATUS                                 PORTS
localai   localai/localai:latest-aio-gpu-nvidia-cuda-12   "/aio/entrypoint.sh"     localai   About a minute ago   Up About a minute (health: starting)   0.0.0.0:8080->8080/tcp

如果出现问题,请检查日志。你还可以使用日志来验证 localai 是否可以看到 GPU。运行

docker logs localai

应该可以看到这样的信息:

$ docker logs localai
===> LocalAI All-in-One (AIO) container starting...
NVIDIA GPU detected
Thu Mar 28 11:15:41 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.86.10              Driver Version: 535.86.10    CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  Tesla T4                       Off | 00000000:00:04.0 Off |                    0 |
| N/A   59C    P0              29W /  70W |      2MiB / 15360MiB |      6%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|  No running processes found                                                           |
+---------------------------------------------------------------------------------------+
NVIDIA GPU detected. Attempting to find memory size...
Total GPU Memory: 15360 MiB

最后,你可以通过查询已安装模型的列表来验证推理服务器是否正常工作:

curl -k http://localhost:8080/v1/models

应该产生如下输出:

{"object":"list","data":[{"id":"tts-1","object":"model"},{"id":"text-embedding-ada-002","object":"model"},{"id":"gpt-4","object":"model"},{"id":"whisper-1","object":"model"},{"id":"stablediffusion","object":"model"},{"id":"gpt-4-vision-preview","object":"model"},{"id":"MODEL_CARD","object":"model"},{"id":"llava-v1.6-7b-mmproj-f16.gguf","object":"model"},{"id":"voice-en-us-amy-low.tar.gz","object":"model"}]}

步骤 4:创建 Elasticsearch _inference 服务

我们已经创建并配置了 LocalAI 推理服务器。由于它是 OpenAI 推理服务器的直接替代品,我们可以在 Elasticsearch 中创建一个新的 openai 推理服务。Elasticsearch 8.14 中实现了对此功能的支持。

要创建新的推理服务,请在 Kibana 中打开 Dev Tools 并运行以下命令:

PUT _inference/text_embedding/mxbai-embed-large-v1
{"service": "openai","service_settings": {"model_id": "mxbai-embed-large-v1","url": "http://localhost:8080/embeddings","api_key": "ignored"}
}

注意

  1. api_key 参数是 openai 服务所必需的,必须设置,但具体值对我们的 LocalAI 服务并不重要。
  2. 对于大型模型,如果模型首次下载到 LocalAI 服务器需要很长时间,则 PUT 请求最初可能会超时。只需在短时间内重试 PUT 请求即可。

最后,你可以验证推理服务是否正常工作:

POST _inference/text_embedding/mxbai-embed-large-v1
{"input": "It takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!"
}

应该产生如下输出:

{"text_embedding": [{"embedding": [-0.028375082,0.6544269,0.1583663,0.88167363,0.5215657,0.05415681,0.62085253,0.069351405,0.29407632,0.51018727,0.8183201,...]}]
}

结论

按照本文中的步骤,你可以设置 LocalAI,使用 GPU 加速计算数据的嵌入,而无需依赖第三方推理服务。借助 LocalAI,在隔离环境中或有隐私问题的 Elasticsearch 用户可以利用世界一流的向量数据库来开发他们的 RAG 应用程序,而无需牺牲计算性能或选择最适合其需求的 AI 模型的能力。

立即尝试使用 Elastic Stack 构建你自己的 RAG 应用程序:在云端、隔离环境中或在你的笔记本电脑上!

准备好自己尝试了吗?开始免费试用。
希望将 RAG 构建到你的应用程序中?想尝试使用矢量数据库的不同 LLM 吗?
查看我们在 Github 上为 LangChain、Cohere 等提供的示例笔记本,并立即加入 Elasticsearch Relevance Engine 培训。

原文:LocalAI for GPU-Powered Text Embeddings in Air-Gapped Environments — Elastic Search Labs

这篇关于如何在隔离环境中设置 LocalAI 以实现 GPU 驱动的文本嵌入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046656

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景