Qwen2-MOE-57B-A14B模型结构解读

2024-06-09 23:12

本文主要是介绍Qwen2-MOE-57B-A14B模型结构解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Qwen2-MOE-57B-A14B模型结构解读

模型代码文件下载

该模型总的参数为57B,激活参数为14B,推理速度比32B的快,而且性能更好。

Qwen2-MOE-57B-A14B模型总体结构

<class 'transformers.models.qwen2_moe.modeling_qwen2_moe.Qwen2MoeForCausalLM'>
Qwen2MoeForCausalLM((model): Qwen2MoeModel((embed_tokens): Embedding(151936, 3584)(layers): ModuleList((0-27): 28 x Qwen2MoeDecoderLayer((self_attn): Qwen2MoeSdpaAttention((q_proj): Linear(in_features=3584, out_features=3584, bias=True)(k_proj): Linear(in_features=3584, out_features=512, bias=True)(v_proj): Linear(in_features=3584, out_features=512, bias=True)(o_proj): Linear(in_features=3584, out_features=3584, bias=False)(rotary_emb): Qwen2MoeRotaryEmbedding())(mlp): Qwen2MoeSparseMoeBlock((gate): Linear(in_features=3584, out_features=64, bias=False)(experts): ModuleList((0-63): 64 x Qwen2MoeMLP((gate_proj): Linear(in_features=3584, out_features=2560, bias=False)(up_proj): Linear(in_features=3584, out_features=2560, bias=False)(down_proj): Linear(in_features=2560, out_features=3584, bias=False)(act_fn): SiLU()))(shared_expert): Qwen2MoeMLP((gate_proj): Linear(in_features=3584, out_features=20480, bias=False)(up_proj): Linear(in_features=3584, out_features=20480, bias=False)(down_proj): Linear(in_features=20480, out_features=3584, bias=False)(act_fn): SiLU())(shared_expert_gate): Linear(in_features=3584, out_features=1, bias=False))(input_layernorm): Qwen2MoeRMSNorm()(post_attention_layernorm): Qwen2MoeRMSNorm()))(norm): Qwen2MoeRMSNorm())(lm_head): Linear(in_features=3584, out_features=151936, bias=False)
)

Qwen2-MOE-57B-A14B模型详细结构(下面是从输入到输出的顺序输出的每层的参数量)

#输入的Embedding层
model.embed_tokens.weight: torch.Size([151936, 3584])
#主体的layer层,model.layers.0是第一层,共有28层
#下面是model.layers.0的attention层
model.layers.0.self_attn.q_proj.weight: torch.Size([3584, 3584])
model.layers.0.self_attn.q_proj.bias: torch.Size([3584])
model.layers.0.self_attn.k_proj.weight: torch.Size([512, 3584])
model.layers.0.self_attn.k_proj.bias: torch.Size([512])
model.layers.0.self_attn.v_proj.weight: torch.Size([512, 3584])
model.layers.0.self_attn.v_proj.bias: torch.Size([512])
model.layers.0.self_attn.o_proj.weight: torch.Size([3584, 3584])
model.layers.0.mlp.gate.weight: torch.Size([64, 3584])#下面是model.layers.0的moe结构的mlp层
model.layers.0.mlp.experts.0.gate_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.0.up_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.0.down_proj.weight: torch.Size([3584, 2560])
model.layers.0.mlp.experts.1.gate_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.1.up_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.1.down_proj.weight: torch.Size([3584, 2560])
model.layers.0.mlp.experts.2.gate_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.2.up_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.2.down_proj.weight: torch.Size([3584, 2560])...64个model.layers.0.mlp.experts层,这里省略model.layers.0.mlp.experts.3----model.layers.0.mlp.experts.62model.layers.0.mlp.experts.63.gate_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.63.up_proj.weight: torch.Size([2560, 3584])
model.layers.0.mlp.experts.63.down_proj.weight: torch.Size([3584, 2560])#下面是model.layers.0的shared moe结构的mlp层
model.layers.0.mlp.shared_expert.gate_proj.weight: torch.Size([20480, 3584])
model.layers.0.mlp.shared_expert.up_proj.weight: torch.Size([20480, 3584])
model.layers.0.mlp.shared_expert.down_proj.weight: torch.Size([3584, 20480])
model.layers.0.mlp.shared_expert_gate.weight: torch.Size([1, 3584])#下面是是model.layers.0的Qwen2MoeRMSNorm层
model.layers.0.input_layernorm.weight: torch.Size([3584])
model.layers.0.post_attention_layernorm.weight: torch.Size([3584])...这里省略model.layers.1---model.layers.27,它们的结构与model.layers.0一样#下面是马上要输出前的归一化norm层
model.norm.weight: torch.Size([3584])#下面是输出到最后的151936个token概率分布的mlp层
lm_head.weight: torch.Size([151936, 3584])

这篇关于Qwen2-MOE-57B-A14B模型结构解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046567

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每