【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy)

本文主要是介绍【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 作者主页: 🔗进朱者赤的博客

  • 精选专栏:🔗经典算法

  • 作者简介:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名

  • ❤️觉得文章还不错的话欢迎大家点赞👍➕收藏⭐️➕评论,💬支持博主,记得点个大大的关注,持续更新🤞
    ————————————————-

题目描述

给定一个完全二叉树,计算树的节点个数。完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h 个节点。

原题:LeetCode 222

思路及实现

方式一:递归遍历

思路

递归遍历整棵树,每个节点都返回其子树的大小,最终相加即为整个树的大小。

代码实现

Java版本
// 假设树的节点定义如下
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;return 1 + countNodes(root.left) + countNodes(root.right);}
}

说明:这是最基本的递归方法,简单易懂但效率不高,因为会遍历整个树。

C语言版本
// 假设树的节点定义如下
struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
};int countNodes(struct TreeNode* root) {if (root == NULL) return 0;return 1 + countNodes(root->left) + countNodes(root->right);
}

说明:与Java版本类似,只是语法不同。

Python3版本
# 假设树的节点定义如下
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightclass Solution:def countNodes(self, root: TreeNode) -> int:if not root: return 0return 1 + self.countNodes(root.left) + self.countNodes(root.right)

说明:Python版本的实现与Java和C类似。

Golang版本
// 假设树的节点定义如下
type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func countNodes(root *TreeNode) int {if root == nil {return 0}return 1 + countNodes(root.Left) + countNodes(root.Right)
}

说明:Golang版本的实现与上述语言类似。

复杂度分析

  • 时间复杂度:O(N),其中N为树的节点个数。每个节点都遍历了一次。
  • 空间复杂度:O(H),其中H为树的高度。递归调用栈的深度最大为树的高度。

方式二:二分查找+递归

思路

利用完全二叉树的性质,先找到树的高度,然后利用二分查找确定左子树或右子树中最后一层满二叉树的节点个数,递归计算剩余部分。

以下是按照给定思路实现的完全二叉树节点数统计的Java、C、Python3和Go语言的代码,以及相应的复杂度分析。

代码实现

Java
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);if (leftHeight == rightHeight) {// 左子树是满二叉树return (1 << leftHeight) + countNodes(root.right);} else {// 左子树不是满二叉树,递归计算左子树return 1 + countNodes(root.left);}}private int getHeight(TreeNode node) {if (node == null) return 0;return 1 + getHeight(node.left);}
}
C
#include <stdio.h>
#include <stdlib.h>typedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
} TreeNode;int getHeight(TreeNode* node) {if (node == NULL) return 0;return 1 + getHeight(node->left);
}int countNodes(TreeNode* root) {if (root == NULL) return 0;int leftHeight = getHeight(root->left);int rightHeight = getHeight(root->right);if (leftHeight == rightHeight) {return (1 << leftHeight) + countNodes(root->right);} else {return 1 + countNodes(root->left);}
}
Python3
class TreeNode:def __init__(self, x):self.val = xself.left = Noneself.right = Nonedef getHeight(node):if node is None:return 0return 1 + getHeight(node.left)def countNodes(root):if root is None:return 0leftHeight = getHeight(root.left)rightHeight = getHeight(root.right)if leftHeight == rightHeight:return (1 << leftHeight) + countNodes(root.right)else:return 1 + countNodes(root.left)
Go
package mainimport ("fmt""math"
)type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func getHeight(node *TreeNode) int {if node == nil {return 0}return 1 + getHeight(node.Left)
}func countNodes(root *TreeNode) int {if root == nil {return 0}leftHeight := getHeight(root.Left)rightHeight := getHeight(root.Right)if leftHeight == rightHeight {return int(math.Pow(2, float64(leftHeight))) + countNodes(root.Right)} else {return 1 + countNodes(root.Left)}
}func main() {// Test code// ...
}

复杂度分析

  • 时间复杂度:O(N log N),其中 N 是树的节点数。在最坏情况下,当树接近满二叉树时,每次递归调用 getHeight 都会遍历树的一部分,直到找到完全二叉树的边界。由于二分查找的性质,递归调用的次数为 O(log N),但每次递归可能需要遍历树的大部分节点,因此总的时间复杂度为 O(N log N)。然而,在平均情况下,由于使用了二分查找,性能会优于最坏情况。

  • 空间复杂度:O(H),其中 H 是树的高度。这是由递归调用栈的深度决定的。在完全二叉树中,H 通常远小于 N(节点数),但在最坏情况下(树接近满二叉树),H 接近于 log N。因此,空间复杂度在最坏情况下为 O(log N)。

总结

以下是针对完全二叉树节点数统计的两种方式的总结:

方式优点缺点时间复杂度空间复杂度
方式一(层次遍历)直观易懂,不依赖特殊性质代码量较大,需要额外的空间存储队列O(N)O(N)(队列空间)
方式二(二分查找+递归)利用完全二叉树的性质,平均性能较好递归调用栈可能较深,最坏情况下时间复杂度较高O(N log N)O(H)(H为树的高度,通常小于N)

相似题目

以下是与完全二叉树节点数统计相似的题目,这些题目可能需要类似的算法思想或者技巧来解决:

相似题目难度链接
105. 从前序与中序遍历序列构造二叉树中等LeetCode 105
106. 从中序与后序遍历序列构造二叉树中等LeetCode 106
110. 平衡二叉树简单LeetCode 110
111. 二叉树的最小深度简单LeetCode 111
112. 路径总和简单LeetCode 112
222. 完全二叉树的节点个数中等LeetCode 222(本题)
543. 二叉树的直径简单LeetCode 543
572. 另一个树的子树中等LeetCode 572
993. 二叉树的堂兄弟节点中等LeetCode 993
104. 二叉树的最大深度简单LeetCode 104

请注意,这些题目可能并不完全与完全二叉树节点数统计具有相同的解题技巧,但它们都涉及到了二叉树的遍历、性质利用、递归、DFS/BFS等常见的算法思想。

欢迎一键三连(关注+点赞+收藏),技术的路上一起加油!!!代码改变世界

  • 关于我:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名),回复暗号,更能获取学习秘籍和书籍等

  • —⬇️欢迎关注下面的公众号:进朱者赤,认识不一样的技术人。⬇️—

这篇关于【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046525

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现