【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy)

本文主要是介绍【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 作者主页: 🔗进朱者赤的博客

  • 精选专栏:🔗经典算法

  • 作者简介:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名

  • ❤️觉得文章还不错的话欢迎大家点赞👍➕收藏⭐️➕评论,💬支持博主,记得点个大大的关注,持续更新🤞
    ————————————————-

题目描述

给定一个完全二叉树,计算树的节点个数。完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h 个节点。

原题:LeetCode 222

思路及实现

方式一:递归遍历

思路

递归遍历整棵树,每个节点都返回其子树的大小,最终相加即为整个树的大小。

代码实现

Java版本
// 假设树的节点定义如下
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;return 1 + countNodes(root.left) + countNodes(root.right);}
}

说明:这是最基本的递归方法,简单易懂但效率不高,因为会遍历整个树。

C语言版本
// 假设树的节点定义如下
struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
};int countNodes(struct TreeNode* root) {if (root == NULL) return 0;return 1 + countNodes(root->left) + countNodes(root->right);
}

说明:与Java版本类似,只是语法不同。

Python3版本
# 假设树的节点定义如下
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightclass Solution:def countNodes(self, root: TreeNode) -> int:if not root: return 0return 1 + self.countNodes(root.left) + self.countNodes(root.right)

说明:Python版本的实现与Java和C类似。

Golang版本
// 假设树的节点定义如下
type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func countNodes(root *TreeNode) int {if root == nil {return 0}return 1 + countNodes(root.Left) + countNodes(root.Right)
}

说明:Golang版本的实现与上述语言类似。

复杂度分析

  • 时间复杂度:O(N),其中N为树的节点个数。每个节点都遍历了一次。
  • 空间复杂度:O(H),其中H为树的高度。递归调用栈的深度最大为树的高度。

方式二:二分查找+递归

思路

利用完全二叉树的性质,先找到树的高度,然后利用二分查找确定左子树或右子树中最后一层满二叉树的节点个数,递归计算剩余部分。

以下是按照给定思路实现的完全二叉树节点数统计的Java、C、Python3和Go语言的代码,以及相应的复杂度分析。

代码实现

Java
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);if (leftHeight == rightHeight) {// 左子树是满二叉树return (1 << leftHeight) + countNodes(root.right);} else {// 左子树不是满二叉树,递归计算左子树return 1 + countNodes(root.left);}}private int getHeight(TreeNode node) {if (node == null) return 0;return 1 + getHeight(node.left);}
}
C
#include <stdio.h>
#include <stdlib.h>typedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
} TreeNode;int getHeight(TreeNode* node) {if (node == NULL) return 0;return 1 + getHeight(node->left);
}int countNodes(TreeNode* root) {if (root == NULL) return 0;int leftHeight = getHeight(root->left);int rightHeight = getHeight(root->right);if (leftHeight == rightHeight) {return (1 << leftHeight) + countNodes(root->right);} else {return 1 + countNodes(root->left);}
}
Python3
class TreeNode:def __init__(self, x):self.val = xself.left = Noneself.right = Nonedef getHeight(node):if node is None:return 0return 1 + getHeight(node.left)def countNodes(root):if root is None:return 0leftHeight = getHeight(root.left)rightHeight = getHeight(root.right)if leftHeight == rightHeight:return (1 << leftHeight) + countNodes(root.right)else:return 1 + countNodes(root.left)
Go
package mainimport ("fmt""math"
)type TreeNode struct {Val   intLeft  *TreeNodeRight *TreeNode
}func getHeight(node *TreeNode) int {if node == nil {return 0}return 1 + getHeight(node.Left)
}func countNodes(root *TreeNode) int {if root == nil {return 0}leftHeight := getHeight(root.Left)rightHeight := getHeight(root.Right)if leftHeight == rightHeight {return int(math.Pow(2, float64(leftHeight))) + countNodes(root.Right)} else {return 1 + countNodes(root.Left)}
}func main() {// Test code// ...
}

复杂度分析

  • 时间复杂度:O(N log N),其中 N 是树的节点数。在最坏情况下,当树接近满二叉树时,每次递归调用 getHeight 都会遍历树的一部分,直到找到完全二叉树的边界。由于二分查找的性质,递归调用的次数为 O(log N),但每次递归可能需要遍历树的大部分节点,因此总的时间复杂度为 O(N log N)。然而,在平均情况下,由于使用了二分查找,性能会优于最坏情况。

  • 空间复杂度:O(H),其中 H 是树的高度。这是由递归调用栈的深度决定的。在完全二叉树中,H 通常远小于 N(节点数),但在最坏情况下(树接近满二叉树),H 接近于 log N。因此,空间复杂度在最坏情况下为 O(log N)。

总结

以下是针对完全二叉树节点数统计的两种方式的总结:

方式优点缺点时间复杂度空间复杂度
方式一(层次遍历)直观易懂,不依赖特殊性质代码量较大,需要额外的空间存储队列O(N)O(N)(队列空间)
方式二(二分查找+递归)利用完全二叉树的性质,平均性能较好递归调用栈可能较深,最坏情况下时间复杂度较高O(N log N)O(H)(H为树的高度,通常小于N)

相似题目

以下是与完全二叉树节点数统计相似的题目,这些题目可能需要类似的算法思想或者技巧来解决:

相似题目难度链接
105. 从前序与中序遍历序列构造二叉树中等LeetCode 105
106. 从中序与后序遍历序列构造二叉树中等LeetCode 106
110. 平衡二叉树简单LeetCode 110
111. 二叉树的最小深度简单LeetCode 111
112. 路径总和简单LeetCode 112
222. 完全二叉树的节点个数中等LeetCode 222(本题)
543. 二叉树的直径简单LeetCode 543
572. 另一个树的子树中等LeetCode 572
993. 二叉树的堂兄弟节点中等LeetCode 993
104. 二叉树的最大深度简单LeetCode 104

请注意,这些题目可能并不完全与完全二叉树节点数统计具有相同的解题技巧,但它们都涉及到了二叉树的遍历、性质利用、递归、DFS/BFS等常见的算法思想。

欢迎一键三连(关注+点赞+收藏),技术的路上一起加油!!!代码改变世界

  • 关于我:阿里非典型程序员一枚 ,记录在大厂的打怪升级之路。 一起学习Java、大数据、数据结构算法(公众号同名),回复暗号,更能获取学习秘籍和书籍等

  • —⬇️欢迎关注下面的公众号:进朱者赤,认识不一样的技术人。⬇️—

这篇关于【经典算法】LeetCode 222. 完全二叉树的节点个数(Java/C/Python3实现含注释说明,Easy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046525

相关文章

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四