本文主要是介绍关于样本方差的分母是 ( n-1 ) 而不是 ( n )的原因,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
样本方差的分母是 ( n-1 ) 而不是 ( n ) 的原因与统计学中的“自由度”概念有关。使用 ( n-1 ) 作为分母可以使样本方差成为总体方差的无偏估计量。
自由度
在计算样本方差时,我们需要先计算样本均值 ( \bar{x} )。样本中的 ( n ) 个数据点中,实际上只有 ( n-1 ) 个数据点是自由变化的,因为最后一个数据点可以通过样本均值和前面的 ( n-1 ) 个数据点确定。因此,我们说在计算样本方差时,有 ( n-1 ) 个自由度。
无偏估计
如果我们使用 ( n ) 作为分母来计算样本方差:
s n 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 sn2=n1i=1∑n(xi−xˉ)2
这个估计量会系统性地低估总体方差 ( \sigma^2 )。这是因为在计算样本方差时,样本均值 ( \bar{x} ) 是根据样本数据计算出来的,这使得每个样本数据点 ( x_i ) 与 ( \bar{x} ) 的差异小于它们与总体均值 ( \mu ) 的差异。
为了纠正这种偏差,我们使用 ( n-1 ) 作为分母来计算样本方差:
s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n−11i=1∑n(xi−xˉ)2
这种调整使得样本方差成为总体方差的无偏估计量。这意味着在大量重复抽样的情况下,样本方差的期望值等于总体方差。
数学证明
为了证明这种调整的合理性,我们可以用期望值的概念进行解释。令样本方差的计算公式为:
s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n−11i=1∑n(xi−xˉ)2
然后考虑它的期望值:
E [ s 2 ] = E [ 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ] E[s^2] = E\left[\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2\right] E[s2]=E[n−11i=1∑n(xi−xˉ)2]
经过数学推导,可以证明:
E [ s 2 ] = σ 2 E[s^2] = \sigma^2 E[s2]=σ2
这表明使用 ( n-1 ) 作为分母能使样本方差的期望值等于总体方差,从而使样本方差成为总体方差的无偏估计量。
这篇关于关于样本方差的分母是 ( n-1 ) 而不是 ( n )的原因的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!