蓝桥杯软件赛Java研究生组/A组)第二章基础算法-第三节:倍增

本文主要是介绍蓝桥杯软件赛Java研究生组/A组)第二章基础算法-第三节:倍增,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一:概述
  • 二:典型题目
    • (1)题目一(快速幂)
    • (2)题目二(ST表求区间最值)
    • (3)题目三(最近公共祖先)

一:概述

倍增算法:是一种优化算法,通常应用在某些需要高效计算指数幂的场景。它基于分治的思想,通过反复求平方来实现快速计算指数幂的目的。通常应用在最近公共祖先问题、二分查找等等

二:典型题目

(1)题目一(快速幂)

倍增算法最经典的应用就是快速幂,快速幂算法是一种高效计算大整数幂的方法。如下快速幂计算 a b a^{b} ab

  • b b b为偶数时

a b = a b 2 ∗ a b 2 = ( a 2 ) b 2 a^{b} = a^{\frac{b}{2}}* a^{\frac{b}{2}}=(a^{2})^{\frac{b}{2}} ab=a2ba2b=(a2)2b

  • **当 b b b为奇数时

a b = a ∗ a b 2 ∗ a b 2 = a ∗ ( a 2 ) b 2 a^{b} = a*a^{\frac{b}{2}}* a^{\frac{b}{2}}=a*(a^{2})^{\frac{b}{2}} ab=aa2ba2b=a(a2)2b

** b 2 \frac{b}{2} 2b向下取整,迭代求解,直到 b b b为0为止

public static long qmi(long a, long b, long p) {long res = 1;  // 初始化结果为 1while (b > 0) {  // 当指数 b 大于 0 时执行循环if (b & 1 == 1) {  // 判断指数 b 的最低位是否为 1res = res * a % p;  // 如果最低位为 1,则将底数 a 的当前幂乘到结果中,并取模 p}a = a * a % p;  // 底数 a 自乘,相当于计算 a^2, a^4, a^8, ...b >>= 1;  // 将指数 b 右移一位,相当于将指数减半}return res;  // 返回结果
}

例如计算 2 13 2^{13} 213

  • r e s = 2 , a = 2 2 , b = 6 res=2,a=2^{2},b=6 res=2,a=22,b=6

  • r e s = 2 , a = 2 4 , b = 3 res=2,a=2^{4},b=3 res=2,a=24,b=3

  • r e s = 2 5 , a = 2 8 , b = 1 res=2^{5},a=2^{8},b=1 res=25,a=28,b=1

  • r e s = 2 13 , a = 2 16 , b = 0 res=2^{13},a=2^{16},b=0 res=213,a=216,b=0

  • 倍增一般会和其他算法结合使用

(2)题目二(ST表求区间最值)

在这里插入图片描述

思路:见ST表第二节:ST表

int[] arr; // 给定的array
int n = arr.length;// 预处理log数组,log[i]表示不大于i的最大二进制幂的指数
int[] log = new int[n+1];
log[1] = 0;
for(int i = 2; i <= n; i++) {
log[i] = log[i/2] + 1;
}// 初始化ST表,st[i][j]表示从位置i开始,长度为2^J的区间的最值
int[][] st = new int[n][log[n]+1];
for(int i = 0; i < n; i++) {
st[i][0] = arr[i]; // 长度为1的区间的最值就是其本身
}// 动态规划填表
for(int j = 1; j <= log[n]; j++) {
for(int i = 0; i + (1<<j) <=n; i++) {
st[i][j] = Math.max(st[i][j-1], st[i+(1<<(j-1))][j-1]);
}
}// 查找区间[L,R]的最值
int k = log[R-L+1];
// 这两个区间为:[L, L+2^k-1]和[R-2^K+1,R]return Math.max(st[L, k], st[R-(1<<j)+1][k])

(3)题目三(最近公共祖先)

在这里插入图片描述

在这里插入图片描述

void dfs(int x, int u) {dep[x] = dep[u] + 1;// 设置当前节点的深度father[x][0] = u; // 直接父节点// 倍增法处理向上父节点for(int i = 1; i <= 20; i++) {father[x][i] = father[father[x][i-1]][i-1];}// 递归for(int y: list[x]) {if (y != u)dfs(y, x)}
}int lca(int x, int y) {// 确保x是更深的节点if (dep[x] < dep[y]) {swap(x, y);}// x向上跳,使x和y在同一深度for(int i = 20; i >= 0; i--) {if(dep[father[x][i]]>=dep[y]) {x = father[x][i];}}// 如果x和y相等,则找到了lcaif (x == y)return x;// 否则,同时开始向上跳,寻找for(int i = 20; i >= 0; i--) {if(father[x][i] != father[y][i]) {x = father[x][i];y = father[y][i];}}// 返回return father[x][0];
}int n; // 节点数量
List<Integer>[] list = new List[n+1]; // 邻接表
for(int i = 0; i <= n; i++) {list[i] = new ArrayList<>();
}
int[] dep = new int[n+1]; // 每个节点的深度
int[][] father = new int[n+1][21]; // 倍增法,father[x][i]存储x的2^i父节点// 深度搜索,初始化dep数组和father数组
dfs(1, 0);
// 求解x和y的lca
lca(x, y)

这篇关于蓝桥杯软件赛Java研究生组/A组)第二章基础算法-第三节:倍增的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045885

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2