蓝桥杯软件赛Java研究生组/A组)第二章基础算法-第三节:倍增

本文主要是介绍蓝桥杯软件赛Java研究生组/A组)第二章基础算法-第三节:倍增,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一:概述
  • 二:典型题目
    • (1)题目一(快速幂)
    • (2)题目二(ST表求区间最值)
    • (3)题目三(最近公共祖先)

一:概述

倍增算法:是一种优化算法,通常应用在某些需要高效计算指数幂的场景。它基于分治的思想,通过反复求平方来实现快速计算指数幂的目的。通常应用在最近公共祖先问题、二分查找等等

二:典型题目

(1)题目一(快速幂)

倍增算法最经典的应用就是快速幂,快速幂算法是一种高效计算大整数幂的方法。如下快速幂计算 a b a^{b} ab

  • b b b为偶数时

a b = a b 2 ∗ a b 2 = ( a 2 ) b 2 a^{b} = a^{\frac{b}{2}}* a^{\frac{b}{2}}=(a^{2})^{\frac{b}{2}} ab=a2ba2b=(a2)2b

  • **当 b b b为奇数时

a b = a ∗ a b 2 ∗ a b 2 = a ∗ ( a 2 ) b 2 a^{b} = a*a^{\frac{b}{2}}* a^{\frac{b}{2}}=a*(a^{2})^{\frac{b}{2}} ab=aa2ba2b=a(a2)2b

** b 2 \frac{b}{2} 2b向下取整,迭代求解,直到 b b b为0为止

public static long qmi(long a, long b, long p) {long res = 1;  // 初始化结果为 1while (b > 0) {  // 当指数 b 大于 0 时执行循环if (b & 1 == 1) {  // 判断指数 b 的最低位是否为 1res = res * a % p;  // 如果最低位为 1,则将底数 a 的当前幂乘到结果中,并取模 p}a = a * a % p;  // 底数 a 自乘,相当于计算 a^2, a^4, a^8, ...b >>= 1;  // 将指数 b 右移一位,相当于将指数减半}return res;  // 返回结果
}

例如计算 2 13 2^{13} 213

  • r e s = 2 , a = 2 2 , b = 6 res=2,a=2^{2},b=6 res=2,a=22,b=6

  • r e s = 2 , a = 2 4 , b = 3 res=2,a=2^{4},b=3 res=2,a=24,b=3

  • r e s = 2 5 , a = 2 8 , b = 1 res=2^{5},a=2^{8},b=1 res=25,a=28,b=1

  • r e s = 2 13 , a = 2 16 , b = 0 res=2^{13},a=2^{16},b=0 res=213,a=216,b=0

  • 倍增一般会和其他算法结合使用

(2)题目二(ST表求区间最值)

在这里插入图片描述

思路:见ST表第二节:ST表

int[] arr; // 给定的array
int n = arr.length;// 预处理log数组,log[i]表示不大于i的最大二进制幂的指数
int[] log = new int[n+1];
log[1] = 0;
for(int i = 2; i <= n; i++) {
log[i] = log[i/2] + 1;
}// 初始化ST表,st[i][j]表示从位置i开始,长度为2^J的区间的最值
int[][] st = new int[n][log[n]+1];
for(int i = 0; i < n; i++) {
st[i][0] = arr[i]; // 长度为1的区间的最值就是其本身
}// 动态规划填表
for(int j = 1; j <= log[n]; j++) {
for(int i = 0; i + (1<<j) <=n; i++) {
st[i][j] = Math.max(st[i][j-1], st[i+(1<<(j-1))][j-1]);
}
}// 查找区间[L,R]的最值
int k = log[R-L+1];
// 这两个区间为:[L, L+2^k-1]和[R-2^K+1,R]return Math.max(st[L, k], st[R-(1<<j)+1][k])

(3)题目三(最近公共祖先)

在这里插入图片描述

在这里插入图片描述

void dfs(int x, int u) {dep[x] = dep[u] + 1;// 设置当前节点的深度father[x][0] = u; // 直接父节点// 倍增法处理向上父节点for(int i = 1; i <= 20; i++) {father[x][i] = father[father[x][i-1]][i-1];}// 递归for(int y: list[x]) {if (y != u)dfs(y, x)}
}int lca(int x, int y) {// 确保x是更深的节点if (dep[x] < dep[y]) {swap(x, y);}// x向上跳,使x和y在同一深度for(int i = 20; i >= 0; i--) {if(dep[father[x][i]]>=dep[y]) {x = father[x][i];}}// 如果x和y相等,则找到了lcaif (x == y)return x;// 否则,同时开始向上跳,寻找for(int i = 20; i >= 0; i--) {if(father[x][i] != father[y][i]) {x = father[x][i];y = father[y][i];}}// 返回return father[x][0];
}int n; // 节点数量
List<Integer>[] list = new List[n+1]; // 邻接表
for(int i = 0; i <= n; i++) {list[i] = new ArrayList<>();
}
int[] dep = new int[n+1]; // 每个节点的深度
int[][] father = new int[n+1][21]; // 倍增法,father[x][i]存储x的2^i父节点// 深度搜索,初始化dep数组和father数组
dfs(1, 0);
// 求解x和y的lca
lca(x, y)

这篇关于蓝桥杯软件赛Java研究生组/A组)第二章基础算法-第三节:倍增的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045885

相关文章

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件