利用SuperGlue算法实现跨尺度金字塔特征点的高效匹配(含py代码)

本文主要是介绍利用SuperGlue算法实现跨尺度金字塔特征点的高效匹配(含py代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       在计算机视觉领域,特征点匹配是一个基础而关键的任务,广泛应用于图像拼接、三维重建、目标跟踪等方向。传统的特征点匹配方法通常基于相同尺度下提取的特征进行匹配,然而在实际场景中,由于成像距离、分辨率等因素的差异,待匹配图像间存在显著的尺度变化,直接利用原始尺度的特征难以获得理想的匹配效果。为了克服这一难题,构建图像金字塔并在不同层级进行特征提取和匹配成为一种行之有效的策略。本文将给出如何使用图神经网络匹配算法SuperGlue的代码,实现跨金字塔层级的特征点高效匹配,充分利用不同尺度信息,显著提升匹配的准确性和鲁棒性。

1. 文件结构

2. 具体代码 

#! /usr/bin/env python3
import cv2
import torch   # 这一句
torch.set_grad_enabled(False) # 这一句
from models.matching import Matching # 这一句
from models.utils import (frame2tensor) # 这一句
import numpy as npconfig = {'superpoint': {'nms_radius': 4,'keypoint_threshold': 0.005,'max_keypoints': -1},'superglue': {'weights': 'outdoor','sinkhorn_iterations': 20,'match_threshold': 0.2,}
}
#
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
device = 'cuda'
matching = Matching(config).eval().to(device)     # 这一句
keys = ['keypoints', 'scores', 'descriptors']
######################################################################################################
def match_frames_with_super_glue(frame0,frame1):print("正在调用基于 superGlue 匹配的函数进行特征点匹配...")  # 添加了print语句# 将参考帧和当前帧转换为PyTorch张量格式frame_tensor0 = frame2tensor(frame0, device)frame_tensor1 = frame2tensor(frame1, device)# 使用SuperPoint网络提取参考帧的特征点last_data = matching.superpoint({'image': frame_tensor0})# 将提取到的参考帧特征点数据转换为字典格式last_data = {k + '0': last_data[k] for k in keys}last_data['image0'] = frame_tensor0# 获取参考帧的特征点坐标kpts0 = last_data['keypoints0'][0].cpu().numpy()# 使用SuperGlue网络在参考帧和当前帧之间进行特征点匹配pred = matching({**last_data, 'image1': frame_tensor1})# 获取当前帧的特征点坐标kpts1 = pred['keypoints1'][0].cpu().numpy()# 获取特征点匹配结果和匹配置信度matches = pred['matches0'][0].cpu().numpy()confidence = pred['matching_scores0'][0].cpu().numpy()# 筛选出有效的匹配对valid = matches > -1mkpts0 = kpts0[valid]mkpts1 = kpts1[matches[valid]]# 打印匹配结果## print(f"----已经完成帧间的关键点匹配----")for i, (kp0, kp1) in enumerate(zip(mkpts0, mkpts1)):print(f"Match {i}: ({kp0[0]:.2f}, {kp0[1]:.2f}) -> ({kp1[0]:.2f}, {kp1[1]:.2f})")# 确保两个图像都是三通道if len(frame0.shape) == 2:vis_frame0 = cv2.cvtColor(frame0, cv2.COLOR_GRAY2BGR)else:vis_frame0 = frame0.copy()if len(frame1.shape) == 2:vis_frame1 = cv2.cvtColor(frame1, cv2.COLOR_GRAY2BGR)else:vis_frame1 = frame1.copy()# 绘制第一个输入图像及其特征点vis_frame0_with_kpts = vis_frame0.copy()for kp in kpts0:cv2.circle(vis_frame0_with_kpts, (int(kp[0]), int(kp[1])), 3, (0, 255, 0), -1)cv2.imshow("Input Frame 0 with Keypoints", vis_frame0_with_kpts)# 绘制第二个输入图像及其特征点vis_frame1_with_kpts = vis_frame1.copy()for kp in kpts1:cv2.circle(vis_frame1_with_kpts, (int(kp[0]), int(kp[1])), 3, (0, 255, 0), -1)cv2.imshow("Input Frame 1 with Keypoints", vis_frame1_with_kpts)# 绘制特征点for kp in mkpts0:cv2.circle(vis_frame0, (int(kp[0]), int(kp[1])), 3, (0, 255, 0), -1)for kp in mkpts1:cv2.circle(vis_frame1, (int(kp[0]), int(kp[1])), 3, (0, 255, 0), -1)# 调整高度一致,通过在较短的图像上下填充黑色背景max_height = max(vis_frame0.shape[0], vis_frame1.shape[0])if vis_frame0.shape[0] < max_height:diff = max_height - vis_frame0.shape[0]pad_top = np.zeros((diff // 2, vis_frame0.shape[1], 3), dtype=np.uint8)pad_bottom = np.zeros((diff - diff // 2, vis_frame0.shape[1], 3), dtype=np.uint8)vis_frame0 = np.vstack((pad_top, vis_frame0, pad_bottom))if vis_frame1.shape[0] < max_height:diff = max_height - vis_frame1.shape[0]pad_top = np.zeros((diff // 2, vis_frame1.shape[1], 3), dtype=np.uint8)pad_bottom = np.zeros((diff - diff // 2, vis_frame1.shape[1], 3), dtype=np.uint8)vis_frame1 = np.vstack((pad_top, vis_frame1, pad_bottom))# 计算右侧图像的垂直偏移量right_pad_top = pad_top.shape[0]# 绘制匹配线段concat_frame = np.hstack((vis_frame0, vis_frame1))for kp0, kp1 in zip(mkpts0, mkpts1):pt0 = (int(kp0[0]), int(kp0[1]))pt1 = (int(kp1[0]) + vis_frame0.shape[1], int(kp1[1]) + right_pad_top)cv2.line(concat_frame, pt0, pt1, (0, 255, 0), 1)# 缩小可视化窗口大小scale_factor = 1resized_frame = cv2.resize(concat_frame, None, fx=scale_factor, fy=scale_factor)# 显示可视化结果cv2.imshow("Matched Features", resized_frame)cv2.waitKey(0)cv2.destroyAllWindows()return mkpts0, mkpts1, confidence[valid]def build_pyramid(image, scale=1.2, min_size=(30, 30)):pyramid = [image]while True:last_image = pyramid[-1]width = int(last_image.shape[1] / scale)height = int(last_image.shape[0] / scale)if width < min_size[0] or height < min_size[1]:breaknext_image = cv2.resize(last_image, (width, height))pyramid.append(next_image)return pyramidif __name__ == "__main__":# 读取两帧图像frame0 = cv2.imread("/home/fairlee/786D6A341753F4B4/KITTI/sequences_kitti_00_21/01/image_0/000630.png", 0)frame1 = cv2.imread("/home/fairlee/786D6A341753F4B4/KITTI/sequences_kitti_00_21/01/image_0/000631.png", 0)# 构建 frame1 的金字塔pyramid1 = build_pyramid(frame1, scale=1.2)# # # 显示金字塔层# for i, layer in enumerate(pyramid1):#     cv2.imshow(f"Layer {i}", layer)#     cv2.waitKey(500)  # 显示500毫秒# cv2.destroyAllWindows()# 选择合适的金字塔层作为 frame1 的替代frame1_substitute = pyramid1[2]  # 例如,选择第二层# 调用match_frames_with_super_glue函数进行特征点匹配mkpts0, mkpts1, confidence = match_frames_with_super_glue(frame0, frame1_substitute)# 打印匹配结果print(f"第一帧的特征点匹配到的特征点数量: {len(mkpts0)}")print(f"第二帧的特征点匹配到的特征点数量: {len(mkpts1)}")print(f"匹配置信度的长度为: {len(confidence)}")

3. 运行结果

       代码实现展示了该方法的具体流程,通过选取合适的金字塔层作为待匹配图像的替代,实现了跨尺度的特征点匹配。实验结果表明,该方法能够有效地处理存在显著尺度变化的图像,获得数量可观且置信度较高的匹配点对,为后续的图像拼接、三维重建等任务提供了重要的基础。该方法的优越性在于巧妙地结合了图像金字塔的多尺度表示和SuperGlue的强大匹配能力,为解决复杂场景下的特征匹配难题提供了新的思路和方案。

这篇关于利用SuperGlue算法实现跨尺度金字塔特征点的高效匹配(含py代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045729

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示