【CS.AL】八大排序算法 —— 快速排序全揭秘:从基础到优化

2024-06-09 11:04

本文主要是介绍【CS.AL】八大排序算法 —— 快速排序全揭秘:从基础到优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 1. 快速排序简介
      • 1.1 定义
      • 1.2 时间复杂度
      • 1.3 相关资源
    • 2. 最优的Partition算法 🔥
      • 2.1 Introsort简介
      • 2.2 过程示例
    • 3. 非递归快速排序
      • 3.1 实现
    • 4. 递归快速排序
      • 4.1 实现
    • 5. 有问题的Partition
      • 5.1 实现
    • 6. 三中位数主元选择
      • 6.1 实现
    • 7. 总结

1. 快速排序简介

1.1 定义

快速排序:快速排序也采用分治策略,选择一个基准元素,将数组分成比基准小和比基准大的两部分,再对两部分递归地进行排序。快速排序的平均时间复杂度为O(n log n),是目前应用广泛的排序算法之一。

1.2 时间复杂度

  • 最坏情况:O(n²)
  • 平均情况:O(n log₂n)
  • 最佳情况:O(n log₂n)

1.3 相关资源

912. 排序数组 - 力扣(LeetCode)

2. 最优的Partition算法 🔥

2.1 Introsort简介

Introsort(内排序)从快速排序开始作为主要排序算法。在最坏情况下(例如,数组已经排序或接近排序),快速排序可能退化为O(n²)时间复杂度。为了避免快速排序的最坏情况,Introsort引入了一个最大递归深度。当递归深度超过这个阈值时,算法切换到堆排序或归并排序,以确保更好的最坏情况性能。

template <typename Tp>
int partition(vector<Tp>& nums, int lIdx, int rIdx) {int randomIndex = lIdx + rand() % (rIdx - lIdx + 1);std::swap(nums[randomIndex], nums[rIdx]);Tp pivot = nums[rIdx];int lBoundary = lIdx;int rBoundary = rIdx - 1;for(; ; ++lBoundary, --rBoundary){for (; lBoundary <= rBoundary && nums[lBoundary] < pivot; ++lBoundary) {}for (; lBoundary <= rBoundary && nums[rBoundary] > pivot; --rBoundary) {}if (lBoundary > rBoundary) {break;}std::swap(nums[lBoundary], nums[rBoundary]);}std::swap(nums[rIdx], nums[lBoundary]);return lBoundary;
}

2.2 过程示例

  • 假设 nums = [7, 3, 5, 1, 2, 6, 4],随机选择的pivot下标为5,即6与最右的4交换,得到 nums = [7, 3, 5, 1, 2, 4, 6]
  • 分区指针起始如图:left (lIdx) -> 7, 3, 5, 1, 2, 4 <- right (rIdx), 6(pivot)
  • 左指针移动到第一个大于或等于主元的元素(即7),右指针移动到第一个小于或等于主元的元素(为4):left (lIdx) -> 7, 3, 5, 1, 2, 4 <- right (rIdx), 6(pivot)
  • 交换左右指针处的元素:left (lIdx) -> 4, 3, 5, 1, 2, 7 <- right (rIdx), 6(pivot)
  • 继续该过程,直到左右指针相遇:4, 3, 5, 1, 2 <- right (rIdx), left (lIdx) -> 7, 6(pivot)
  • 将枢轴元素(当前位于右指针处)与左指针处的元素交换(6和7交换)。

3. 非递归快速排序

3.1 实现

template <typename Tp>
void quickSort(vector<Tp>& nums) {std::stack<std::pair<int, int>> stack;stack.push(std::make_pair(0, nums.size() - 1));while (!stack.empty()) {std::pair<int, int> current = stack.top();stack.pop();int lIdx = current.first;int rIdx = current.second;if (lIdx < rIdx) {int boundary = partition(nums, lIdx, rIdx);stack.push(std::make_pair(lIdx, boundary - 1));stack.push(std::make_pair(boundary + 1, rIdx));}}
}

4. 递归快速排序

4.1 实现

template <typename Tp>
void qSortRecursion(vector<Tp>& nums, const int& lIdx, const int& rIdx) {if (lIdx < rIdx) {int boundary = partition(nums, lIdx, rIdx);qSortRecursion(nums, lIdx, boundary - 1);qSortRecursion(nums, boundary + 1, rIdx);}
}template <typename Tp>
void quickSort(vector<Tp>& nums) {qSortRecursion(nums, 0, nums.size() - 1);
}

5. 有问题的Partition

5.1 实现

大量重复元素会超时:

template <typename Tp>
int partition(vector<Tp>& nums, int lIdx, int rIdx) {// 较为有序时, 避免超时int randIdx = lIdx + rand() % (rIdx - lIdx + 1);std::swap(nums[randIdx], nums[rIdx]);int pivot = nums[rIdx];int boundary = lIdx;for (int idx = lIdx; idx < rIdx; ++idx) {if (nums[idx] < pivot) {std::swap(nums[idx], nums[boundary]);++boundary;}}std::swap(nums[boundary], nums[rIdx]); // pivotreturn boundary;
}

通过内排序Introsort修复:

template <typename Tp>
void quickSort(vector<Tp>& nums) {double recThreshold = log10(nums.size()) / log10(2);int recDepth = 0;std::stack<std::pair<int, int>> stack;stack.push(std::make_pair(0, nums.size() - 1));while (!stack.empty()) {++recDepth;if (recDepth >= recThreshold) {heapSort(nums);break;}std::pair<int, int> current = stack.top();stack.pop();int lIdx = current.first;int rIdx = current.second;if (lIdx < rIdx) {int boundary = partition(nums, lIdx, rIdx);stack.push(std::make_pair(lIdx, boundary - 1));stack.push(std::make_pair(boundary + 1, rIdx));}}
}

6. 三中位数主元选择

6.1 实现

template <typename Tp>
int choosePivot(vector<Tp>& nums, int lIdx, int rIdx) {int mid = lIdx + (rIdx - lIdx) / 2;if (nums[lIdx] > nums[mid]) {std::swap(nums[lIdx], nums[mid]);}if (nums[mid] > nums[rIdx]) {std::swap(nums[mid], nums[rIdx]);}if (nums[lIdx] > nums[mid]) {std::swap(nums[lIdx], nums[mid]);}return mid;
}template <typename Tp>
int partition(vector<Tp>& nums, int lIdx, int rIdx) {int pivotIdx = choosePivot(nums, lIdx, rIdx);std::swap(nums[pivotIdx], nums[rIdx]);Tp pivot = nums[rIdx];int lBoundary = lIdx;int rBoundary = rIdx - 1;for(; ; ++lBoundary, --rBoundary){for (; lBoundary <= rBoundary && nums[lBoundary] < pivot; ++lBoundary) {}for (; lBoundary <= rBoundary && nums[rBoundary] > pivot; --rBoundary) {}if (lBoundary > rBoundary) {break;}std::swap(nums[lBoundary], nums[rBoundary]);}std::swap(nums[rIdx], nums[lBoundary]);return lBoundary;
}

7. 总结

快速排序作为一种现代化的排序算法,通过分治策略和递归实现,高效地解决了大多数排序问题。使用最优的Partition算法和三中位数主元选择可以有效优化快速排序的性能,并避免最坏情况的出现。

这篇关于【CS.AL】八大排序算法 —— 快速排序全揭秘:从基础到优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044991

相关文章

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个