NVIDIA Jetson TX1 系列开发教程之五:CAFFE安装与NVIDIA多媒体例程测试

本文主要是介绍NVIDIA Jetson TX1 系列开发教程之五:CAFFE安装与NVIDIA多媒体例程测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NVIDIA Jetson TX1 系列开发教程之五:CAFFE安装与NVIDIA多媒体例程测试


  • 转载请注明作者和出处:http://blog.csdn.net/u011475210
  • 嵌入式平台:NVIDIA Jetson TX1
  • 嵌入式系统:Ubuntu16.04
  • 虚拟机系统:Ubuntu14.04
  • 编者: WordZzzz

写在前面的前面:
之前就已经在实验室的深度学习服务器上安装过CAFFE/SSD,由于当时深度学习服务器管理不佳,多人混用造成好多依赖环境删删减减,经常会出现今天装的CAFFE/SSD明天就不能用的情况,所以难免多折腾几次。因此,博主对他们的安装还是颇有研究的。
大家用NVIDIA Jetson TX1,无非就是看上了它的计算能力,能跑深度学习框架。由于NVIDIA Jetson TX1容量有限,所以建议大家需要哪个就安装哪个。偏向于学习,就安装纯版本的CAFFE,偏向于应用测试,就安装各个基于CAFFE的升级版,比如SSD。

写在前面:
本博文原打算以CAFFE/SSD为例,介绍如何在NVIDIA Jetson TX1上安装CAFFE/SSD,但是最近自己又安装了一遍,发现本博文的步骤不全面,导致python大部分依赖环境都没装上,这样的结果就是jupyter notebook这种工具用不了。所以本篇博文在此只介绍CAFFE安装和基于CAFFE的NVIDIA多媒体例程测试。

安装过程:

1.用以下命令安装依赖包:

$ sudo add-apt-repository universe
$ sudo add-apt-repository multiverse
$ sudo apt-get update
$ sudo apt-get install libboost-all-dev libprotobuf-dev libleveldb-dev libsnappy-dev
$ sudo apt-get install libhdf5-serial-dev protobuf-compiler libgflags-dev libgoogle-glog-dev
$ sudo apt-get install liblmdb-dev libblas-dev libatlas-base-dev

2.下载CAFFE源码安装包从如下网站:

CAFFE:https://github.com/BVLC/caffe.git

$ git clone https://github.com/BVLC/caffe.git

3设置路径并解压:
a.如果在步骤2中选择自己从网页手动下载zip文件,则进行如下操作:
CAFFE:

$ mkdir -pv $HOME/Work/caffe
$ cp caffe-master.zip $HOME/Work/caffe/
$ cd $HOME/Work/caffe/ && unzip caffe-master.zip

b.如果在步骤2中直接git得到caffe文件,则进行如下操作:

$ mv caffe $HOME/Work/caffe/caffe-master

4.编译CAFFE源码:
CAFFE:

$ cd $HOME/Work/caffe/caffe-master
$ cp Makefile.config.example Makefile.config
$ vi Makefile.config

去掉下面该行代码的注释:

USE_CUDNN := 1

重点来了,在Makefile.config中找到下面这几行:

CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \-gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_52,code=sm_52 \
        -gencode arch=compute_60,code=sm_60 \
        -gencode arch=compute_61,code=sm_61 \
        -gencode arch=compute_61,code=compute_61

更改为:

CUDA_ARCH := -gencode arch=compute_53,code=sm_53

这里的后缀数字53是TX1的计算能力,在其他平台上编译CAFFE也是同样的道理,要把计算能力改成对应的值,否则有可能会报错。关于计算能力如何确定,CUDA例程里面有测试程序,跑一下就可以输出GPU性能指标。

声明下面这两行路径,保存后退出:

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/aarch64-linux-gnu/hdf5/serial
$ make -j4

完成后在build/lib目录下会出现库文件libcaffe.so。

$ make all -j4
$ make runtest -j4
$ make pycaffe -j4

5.编译opencv用户库
这个库是CAFFE所必需的。而且只能在目标板上编译。

$ cd ~/tegra_multimedia_api/samples/11_camera_object_identification/opencv_consumer_lib

检查并确保正确设置makefile以下变量:

CUDA_DIR:=/usr/local/cuda
CAFFE_DIR:=$HOME/Work/caffe/caffe-master

编译:

$ make

完成后当前目录下会出现库文件 libopencv_consumer.so

  1. 通过下面的命令下载CAFFE模型二进制文件:
$ sudo apt-get install python-pip
$ sudo pip install pyyaml
$ cd $HOME/Work/caffe/caffe-master
$ ./scripts/download_model_binary.py models/bvlc_reference_caffenet/

用下面的命令获得ImageNet标签文件:

$ ./data/ilsvrc12/get_ilsvrc_aux.sh
  1. 使用下列命令生成和运行示例:
$ cd ~/tegra_multimedia_api/samples/11_camera_object_identification
$ export TEGRA_ARMABI=aarch64-linux-gnu
$ export DISPLAY=:0
$ make
$ export LD_LIBRARY_PATH=$HOME/Work/caffe/caffe-master/build/lib:/usr/local/cuda/lib64
$ ./camera_caffe -width 1920 -height 1080 \-lib opencv_consumer_lib/libopencv_consumer.so \-model $HOME/Work/caffe/caffe-master/models/bvlc_reference_caffenet/deploy.prototxt \-trained $HOME/Work/caffe/caffe-master/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \-mean $HOME/Work/caffe/caffe-master/data/ilsvrc12/imagenet_mean.binaryproto \-label $HOME/Work/caffe/caffe-master/data/ilsvrc12/synset_words.txt

8、环境变量设置
1.在终端执行如下指令:

sudo vim ~/.bashrc

2.在最后一行添加caffe的python路径

export PYTHONPATH=$HOME/Work/caffe/caffe-master/python:$PYTHONPATH

然后加上之前声明的环境变量,这样就不用每次make或者运行的时候再次声明环境变量了。

export TEGRA_ARMABI=aarch64-linux-gnu
export DISPLAY=:0
export LD_LIBRARY_PATH=$HOME/Work/caffe/caffe-master/build/lib:/usr/local/cuda/lib64

3.source环境变量,在终端执行如下命令:

source ~/.bashrc

系列教程持续发布中,欢迎订阅、关注、收藏、评论、点赞哦~~( ̄▽ ̄~)~

完的汪(∪。∪)。。。zzz

这篇关于NVIDIA Jetson TX1 系列开发教程之五:CAFFE安装与NVIDIA多媒体例程测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044761

相关文章

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

mac安装redis全过程

《mac安装redis全过程》文章内容主要介绍了如何从官网下载指定版本的Redis,以及如何在自定义目录下安装和启动Redis,还提到了如何修改Redis的密码和配置文件,以及使用RedisInsig... 目录MAC安装Redis安装启动redis 配置redis 常用命令总结mac安装redis官网下

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装 Ubuntu 24.04 LTS 桌面版或服务器? Ubuntu安装指南

《如何安装Ubuntu24.04LTS桌面版或服务器?Ubuntu安装指南》对于我们程序员来说,有一个好用的操作系统、好的编程环境也是很重要,如何安装Ubuntu24.04LTS桌面... Ubuntu 24.04 LTS,代号 Noble NumBAT,于 2024 年 4 月 25 日正式发布,引入了众

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt