字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现

2024-06-09 07:48

本文主要是介绍字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#coding=utf-8import os
#图像读取库
from PIL import Image
#矩阵运算库
import numpy as np
import tensorflow as tf# 训练还是测试
train = True #True False
# 数据文件夹
if train:data_dir = "data"
else:data_dir = "test"
# 模型文件路径
model_path = "model/image_model"# 从文件夹读取图片和标签到numpy数组中
# 标签信息在文件名中,例如1_40.jpg表示该图片的标签为1
def read_data(data_dir):datas = []labels = []fpaths = []for fname in os.listdir(data_dir):fpath = os.path.join(data_dir, fname)fpaths.append(fpath)image = Image.open(fpath)print(fpath)data = np.array(image) / 255.0label = int(fname.split("_")[0])#label = fname.split("_")[0]datas.append(data)labels.append(label)datas = np.array(datas)labels = np.array(labels)print("shape of datas: {}\tshape of labels: {}".format(datas.shape, labels.shape))return fpaths, datas, labelsfpaths, datas, labels = read_data(data_dir)# 计算有多少类图片
num_classes = len(set(labels))# 定义Placeholder,存放输入和标签
datas_placeholder = tf.placeholder(tf.float32, [None, 20, 20, 3])
labels_placeholder = tf.placeholder(tf.int32, [None])# 存放DropOut参数的容器,训练时为0.25,测试时为0
dropout_placeholdr = tf.placeholder(tf.float32)# 定义卷积层, 20个卷积核, 卷积核大小为5,用Relu激活
conv0 = tf.layers.conv2d(datas_placeholder, 20, 5, activation=tf.nn.relu)
# 定义max-pooling层,pooling窗口为2x2,步长为2x2
pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2])# 定义卷积层, 40个卷积核, 卷积核大小为4,用Relu激活
conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu)
# 定义max-pooling层,pooling窗口为2x2,步长为2x2
pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2])# 将3维特征转换为1维向量
flatten = tf.layers.flatten(pool1)# 全连接层,转换为长度为100的特征向量
fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)# 加上DropOut,防止过拟合
dropout_fc = tf.layers.dropout(fc, dropout_placeholdr)# 未激活的输出层
logits = tf.layers.dense(dropout_fc, num_classes)predicted_labels = tf.arg_max(logits, 1)# 利用交叉熵定义损失
losses = tf.nn.softmax_cross_entropy_with_logits(labels=tf.one_hot(labels_placeholder, num_classes),logits=logits
)
# 平均损失
mean_loss = tf.reduce_mean(losses)# 定义优化器,指定要优化的损失函数
optimizer = tf.train.AdamOptimizer(learning_rate=1e-2).minimize(losses)# 用于保存和载入模型
saver = tf.train.Saver()with tf.Session() as sess:if train:print("训练模式")# 如果是训练,初始化参数sess.run(tf.global_variables_initializer())# 定义输入和Label以填充容器,训练时dropout为0.25train_feed_dict = {datas_placeholder: datas,labels_placeholder: labels,dropout_placeholdr: 0.25}for step in range(300):#150_, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)if step % 10 == 0:print("step = {}\tmean loss = {}".format(step, mean_loss_val))saver.save(sess, model_path)print("训练结束,保存模型到{}".format(model_path))else:print("测试模式")# 如果是测试,载入参数saver.restore(sess, model_path)print("从{}载入模型".format(model_path))# label和名称的对照关系label_name_dict = {0: "0",1: "1",2: "2",3: "3",4: "4",5: "5",6: "6",7: "7",8: "8",9: "9",10: "A",11: "B",12: "C",13: "D",14: "E",15: "F",16: "G",17: "H",18: "I",19: "J",20: "K",21: "L",22: "M",23: "N",24: "P",25: "Q",26: "R",27: "S",28: "T",29: "U",30: "V",31: "W",32: "X",33: "Y",34: "Z"}# 定义输入和Label以填充容器,测试时dropout为0test_feed_dict = {datas_placeholder: datas,labels_placeholder: labels,dropout_placeholdr: 0}predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)len = predicted_labels_val.shape[0]num = 0# 真实label与模型预测labelfor fpath, real_label, predicted_label in zip(fpaths, labels, predicted_labels_val):# 将label id转换为label名real_label_name = label_name_dict[real_label]predicted_label_name = label_name_dict[predicted_label]print("{}\t{} => {}".format(fpath, real_label_name, predicted_label_name))if real_label == predicted_label:num = num + 1print("正确")else:print("错误***************************************************************************")print("正确率:{}% ,总个数:{},判断正确个数:{}".format(num / len * 100, len, num))

 

2019-06-26 15:58:18.709062: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 4. Tune using inter_op_parallelism_threads for best performance.
测试模式
从model/image_model载入模型
test\0_1.jpg    0 => D
错误***************************************************************************
test\10_2.jpg    A => 1
错误***************************************************************************
test\11_0.jpg    B => B
正确
test\12_0.jpg    C => C
正确
test\13_0.jpg    D => D
正确
test\14_0.jpg    E => E
正确
test\15_0.jpg    F => E
错误***************************************************************************
test\16_0.jpg    G => G
正确
test\17_0.jpg    H => H
正确
test\18_0.jpg    I => I
正确
test\19_0.jpg    J => 2
错误***************************************************************************
test\1_0.jpg    1 => 1
正确
test\20_1.jpg    K => K
正确
test\21_0.jpg    L => L
正确
test\22_0.jpg    M => H
错误***************************************************************************
test\22_1.jpg    M => F
错误***************************************************************************
test\23_0.jpg    N => W
错误***************************************************************************
test\24_0.jpg    P => P
正确
test\25_0.jpg    Q => Q
正确
test\26_0.jpg    R => F
错误***************************************************************************
test\27_0.jpg    S => S
正确
test\28_0.jpg    T => T
正确
test\29_0.jpg    U => U
正确
test\2_1.jpg    2 => 2
正确
test\30_0.jpg    V => W
错误***************************************************************************
test\31_0.jpg    W => W
正确
test\32_0.jpg    X => X
正确
test\33_0.jpg    Y => Y
正确
test\34_0.jpg    Z => Z
正确
test\3_5.jpg    3 => 3
正确
test\4_0.jpg    4 => 4
正确
test\4_17.jpg    4 => 4
正确
test\5_2.jpg    5 => 5
正确
test\6_1.jpg    6 => 6
正确
test\7_1.jpg    7 => 7
正确
test\8_2.jpg    8 => 8
正确
test\8_4.jpg    8 => 8
正确
test\9_12.jpg    9 => 9
正确
正确率:76.31578947368422% ,总个数:38,判断正确个数:29

 

 

这篇关于字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044591

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert