字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现

2024-06-09 07:48

本文主要是介绍字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#coding=utf-8import os
#图像读取库
from PIL import Image
#矩阵运算库
import numpy as np
import tensorflow as tf# 训练还是测试
train = True #True False
# 数据文件夹
if train:data_dir = "data"
else:data_dir = "test"
# 模型文件路径
model_path = "model/image_model"# 从文件夹读取图片和标签到numpy数组中
# 标签信息在文件名中,例如1_40.jpg表示该图片的标签为1
def read_data(data_dir):datas = []labels = []fpaths = []for fname in os.listdir(data_dir):fpath = os.path.join(data_dir, fname)fpaths.append(fpath)image = Image.open(fpath)print(fpath)data = np.array(image) / 255.0label = int(fname.split("_")[0])#label = fname.split("_")[0]datas.append(data)labels.append(label)datas = np.array(datas)labels = np.array(labels)print("shape of datas: {}\tshape of labels: {}".format(datas.shape, labels.shape))return fpaths, datas, labelsfpaths, datas, labels = read_data(data_dir)# 计算有多少类图片
num_classes = len(set(labels))# 定义Placeholder,存放输入和标签
datas_placeholder = tf.placeholder(tf.float32, [None, 20, 20, 3])
labels_placeholder = tf.placeholder(tf.int32, [None])# 存放DropOut参数的容器,训练时为0.25,测试时为0
dropout_placeholdr = tf.placeholder(tf.float32)# 定义卷积层, 20个卷积核, 卷积核大小为5,用Relu激活
conv0 = tf.layers.conv2d(datas_placeholder, 20, 5, activation=tf.nn.relu)
# 定义max-pooling层,pooling窗口为2x2,步长为2x2
pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2])# 定义卷积层, 40个卷积核, 卷积核大小为4,用Relu激活
conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu)
# 定义max-pooling层,pooling窗口为2x2,步长为2x2
pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2])# 将3维特征转换为1维向量
flatten = tf.layers.flatten(pool1)# 全连接层,转换为长度为100的特征向量
fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)# 加上DropOut,防止过拟合
dropout_fc = tf.layers.dropout(fc, dropout_placeholdr)# 未激活的输出层
logits = tf.layers.dense(dropout_fc, num_classes)predicted_labels = tf.arg_max(logits, 1)# 利用交叉熵定义损失
losses = tf.nn.softmax_cross_entropy_with_logits(labels=tf.one_hot(labels_placeholder, num_classes),logits=logits
)
# 平均损失
mean_loss = tf.reduce_mean(losses)# 定义优化器,指定要优化的损失函数
optimizer = tf.train.AdamOptimizer(learning_rate=1e-2).minimize(losses)# 用于保存和载入模型
saver = tf.train.Saver()with tf.Session() as sess:if train:print("训练模式")# 如果是训练,初始化参数sess.run(tf.global_variables_initializer())# 定义输入和Label以填充容器,训练时dropout为0.25train_feed_dict = {datas_placeholder: datas,labels_placeholder: labels,dropout_placeholdr: 0.25}for step in range(300):#150_, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)if step % 10 == 0:print("step = {}\tmean loss = {}".format(step, mean_loss_val))saver.save(sess, model_path)print("训练结束,保存模型到{}".format(model_path))else:print("测试模式")# 如果是测试,载入参数saver.restore(sess, model_path)print("从{}载入模型".format(model_path))# label和名称的对照关系label_name_dict = {0: "0",1: "1",2: "2",3: "3",4: "4",5: "5",6: "6",7: "7",8: "8",9: "9",10: "A",11: "B",12: "C",13: "D",14: "E",15: "F",16: "G",17: "H",18: "I",19: "J",20: "K",21: "L",22: "M",23: "N",24: "P",25: "Q",26: "R",27: "S",28: "T",29: "U",30: "V",31: "W",32: "X",33: "Y",34: "Z"}# 定义输入和Label以填充容器,测试时dropout为0test_feed_dict = {datas_placeholder: datas,labels_placeholder: labels,dropout_placeholdr: 0}predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)len = predicted_labels_val.shape[0]num = 0# 真实label与模型预测labelfor fpath, real_label, predicted_label in zip(fpaths, labels, predicted_labels_val):# 将label id转换为label名real_label_name = label_name_dict[real_label]predicted_label_name = label_name_dict[predicted_label]print("{}\t{} => {}".format(fpath, real_label_name, predicted_label_name))if real_label == predicted_label:num = num + 1print("正确")else:print("错误***************************************************************************")print("正确率:{}% ,总个数:{},判断正确个数:{}".format(num / len * 100, len, num))

 

2019-06-26 15:58:18.709062: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 4. Tune using inter_op_parallelism_threads for best performance.
测试模式
从model/image_model载入模型
test\0_1.jpg    0 => D
错误***************************************************************************
test\10_2.jpg    A => 1
错误***************************************************************************
test\11_0.jpg    B => B
正确
test\12_0.jpg    C => C
正确
test\13_0.jpg    D => D
正确
test\14_0.jpg    E => E
正确
test\15_0.jpg    F => E
错误***************************************************************************
test\16_0.jpg    G => G
正确
test\17_0.jpg    H => H
正确
test\18_0.jpg    I => I
正确
test\19_0.jpg    J => 2
错误***************************************************************************
test\1_0.jpg    1 => 1
正确
test\20_1.jpg    K => K
正确
test\21_0.jpg    L => L
正确
test\22_0.jpg    M => H
错误***************************************************************************
test\22_1.jpg    M => F
错误***************************************************************************
test\23_0.jpg    N => W
错误***************************************************************************
test\24_0.jpg    P => P
正确
test\25_0.jpg    Q => Q
正确
test\26_0.jpg    R => F
错误***************************************************************************
test\27_0.jpg    S => S
正确
test\28_0.jpg    T => T
正确
test\29_0.jpg    U => U
正确
test\2_1.jpg    2 => 2
正确
test\30_0.jpg    V => W
错误***************************************************************************
test\31_0.jpg    W => W
正确
test\32_0.jpg    X => X
正确
test\33_0.jpg    Y => Y
正确
test\34_0.jpg    Z => Z
正确
test\3_5.jpg    3 => 3
正确
test\4_0.jpg    4 => 4
正确
test\4_17.jpg    4 => 4
正确
test\5_2.jpg    5 => 5
正确
test\6_1.jpg    6 => 6
正确
test\7_1.jpg    7 => 7
正确
test\8_2.jpg    8 => 8
正确
test\8_4.jpg    8 => 8
正确
test\9_12.jpg    9 => 9
正确
正确率:76.31578947368422% ,总个数:38,判断正确个数:29

 

 

这篇关于字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044591

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J