字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现

2024-06-09 07:48

本文主要是介绍字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#coding=utf-8import os
#图像读取库
from PIL import Image
#矩阵运算库
import numpy as np
import tensorflow as tf# 训练还是测试
train = True #True False
# 数据文件夹
if train:data_dir = "data"
else:data_dir = "test"
# 模型文件路径
model_path = "model/image_model"# 从文件夹读取图片和标签到numpy数组中
# 标签信息在文件名中,例如1_40.jpg表示该图片的标签为1
def read_data(data_dir):datas = []labels = []fpaths = []for fname in os.listdir(data_dir):fpath = os.path.join(data_dir, fname)fpaths.append(fpath)image = Image.open(fpath)print(fpath)data = np.array(image) / 255.0label = int(fname.split("_")[0])#label = fname.split("_")[0]datas.append(data)labels.append(label)datas = np.array(datas)labels = np.array(labels)print("shape of datas: {}\tshape of labels: {}".format(datas.shape, labels.shape))return fpaths, datas, labelsfpaths, datas, labels = read_data(data_dir)# 计算有多少类图片
num_classes = len(set(labels))# 定义Placeholder,存放输入和标签
datas_placeholder = tf.placeholder(tf.float32, [None, 20, 20, 3])
labels_placeholder = tf.placeholder(tf.int32, [None])# 存放DropOut参数的容器,训练时为0.25,测试时为0
dropout_placeholdr = tf.placeholder(tf.float32)# 定义卷积层, 20个卷积核, 卷积核大小为5,用Relu激活
conv0 = tf.layers.conv2d(datas_placeholder, 20, 5, activation=tf.nn.relu)
# 定义max-pooling层,pooling窗口为2x2,步长为2x2
pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2])# 定义卷积层, 40个卷积核, 卷积核大小为4,用Relu激活
conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu)
# 定义max-pooling层,pooling窗口为2x2,步长为2x2
pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2])# 将3维特征转换为1维向量
flatten = tf.layers.flatten(pool1)# 全连接层,转换为长度为100的特征向量
fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)# 加上DropOut,防止过拟合
dropout_fc = tf.layers.dropout(fc, dropout_placeholdr)# 未激活的输出层
logits = tf.layers.dense(dropout_fc, num_classes)predicted_labels = tf.arg_max(logits, 1)# 利用交叉熵定义损失
losses = tf.nn.softmax_cross_entropy_with_logits(labels=tf.one_hot(labels_placeholder, num_classes),logits=logits
)
# 平均损失
mean_loss = tf.reduce_mean(losses)# 定义优化器,指定要优化的损失函数
optimizer = tf.train.AdamOptimizer(learning_rate=1e-2).minimize(losses)# 用于保存和载入模型
saver = tf.train.Saver()with tf.Session() as sess:if train:print("训练模式")# 如果是训练,初始化参数sess.run(tf.global_variables_initializer())# 定义输入和Label以填充容器,训练时dropout为0.25train_feed_dict = {datas_placeholder: datas,labels_placeholder: labels,dropout_placeholdr: 0.25}for step in range(300):#150_, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)if step % 10 == 0:print("step = {}\tmean loss = {}".format(step, mean_loss_val))saver.save(sess, model_path)print("训练结束,保存模型到{}".format(model_path))else:print("测试模式")# 如果是测试,载入参数saver.restore(sess, model_path)print("从{}载入模型".format(model_path))# label和名称的对照关系label_name_dict = {0: "0",1: "1",2: "2",3: "3",4: "4",5: "5",6: "6",7: "7",8: "8",9: "9",10: "A",11: "B",12: "C",13: "D",14: "E",15: "F",16: "G",17: "H",18: "I",19: "J",20: "K",21: "L",22: "M",23: "N",24: "P",25: "Q",26: "R",27: "S",28: "T",29: "U",30: "V",31: "W",32: "X",33: "Y",34: "Z"}# 定义输入和Label以填充容器,测试时dropout为0test_feed_dict = {datas_placeholder: datas,labels_placeholder: labels,dropout_placeholdr: 0}predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)len = predicted_labels_val.shape[0]num = 0# 真实label与模型预测labelfor fpath, real_label, predicted_label in zip(fpaths, labels, predicted_labels_val):# 将label id转换为label名real_label_name = label_name_dict[real_label]predicted_label_name = label_name_dict[predicted_label]print("{}\t{} => {}".format(fpath, real_label_name, predicted_label_name))if real_label == predicted_label:num = num + 1print("正确")else:print("错误***************************************************************************")print("正确率:{}% ,总个数:{},判断正确个数:{}".format(num / len * 100, len, num))

 

2019-06-26 15:58:18.709062: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 4. Tune using inter_op_parallelism_threads for best performance.
测试模式
从model/image_model载入模型
test\0_1.jpg    0 => D
错误***************************************************************************
test\10_2.jpg    A => 1
错误***************************************************************************
test\11_0.jpg    B => B
正确
test\12_0.jpg    C => C
正确
test\13_0.jpg    D => D
正确
test\14_0.jpg    E => E
正确
test\15_0.jpg    F => E
错误***************************************************************************
test\16_0.jpg    G => G
正确
test\17_0.jpg    H => H
正确
test\18_0.jpg    I => I
正确
test\19_0.jpg    J => 2
错误***************************************************************************
test\1_0.jpg    1 => 1
正确
test\20_1.jpg    K => K
正确
test\21_0.jpg    L => L
正确
test\22_0.jpg    M => H
错误***************************************************************************
test\22_1.jpg    M => F
错误***************************************************************************
test\23_0.jpg    N => W
错误***************************************************************************
test\24_0.jpg    P => P
正确
test\25_0.jpg    Q => Q
正确
test\26_0.jpg    R => F
错误***************************************************************************
test\27_0.jpg    S => S
正确
test\28_0.jpg    T => T
正确
test\29_0.jpg    U => U
正确
test\2_1.jpg    2 => 2
正确
test\30_0.jpg    V => W
错误***************************************************************************
test\31_0.jpg    W => W
正确
test\32_0.jpg    X => X
正确
test\33_0.jpg    Y => Y
正确
test\34_0.jpg    Z => Z
正确
test\3_5.jpg    3 => 3
正确
test\4_0.jpg    4 => 4
正确
test\4_17.jpg    4 => 4
正确
test\5_2.jpg    5 => 5
正确
test\6_1.jpg    6 => 6
正确
test\7_1.jpg    7 => 7
正确
test\8_2.jpg    8 => 8
正确
test\8_4.jpg    8 => 8
正确
test\9_12.jpg    9 => 9
正确
正确率:76.31578947368422% ,总个数:38,判断正确个数:29

 

 

这篇关于字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044591

相关文章

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra