字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现

2024-06-09 07:48

本文主要是介绍字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#coding=utf-8import os
#图像读取库
from PIL import Image
#矩阵运算库
import numpy as np
import tensorflow as tf# 训练还是测试
train = True #True False
# 数据文件夹
if train:data_dir = "data"
else:data_dir = "test"
# 模型文件路径
model_path = "model/image_model"# 从文件夹读取图片和标签到numpy数组中
# 标签信息在文件名中,例如1_40.jpg表示该图片的标签为1
def read_data(data_dir):datas = []labels = []fpaths = []for fname in os.listdir(data_dir):fpath = os.path.join(data_dir, fname)fpaths.append(fpath)image = Image.open(fpath)print(fpath)data = np.array(image) / 255.0label = int(fname.split("_")[0])#label = fname.split("_")[0]datas.append(data)labels.append(label)datas = np.array(datas)labels = np.array(labels)print("shape of datas: {}\tshape of labels: {}".format(datas.shape, labels.shape))return fpaths, datas, labelsfpaths, datas, labels = read_data(data_dir)# 计算有多少类图片
num_classes = len(set(labels))# 定义Placeholder,存放输入和标签
datas_placeholder = tf.placeholder(tf.float32, [None, 20, 20, 3])
labels_placeholder = tf.placeholder(tf.int32, [None])# 存放DropOut参数的容器,训练时为0.25,测试时为0
dropout_placeholdr = tf.placeholder(tf.float32)# 定义卷积层, 20个卷积核, 卷积核大小为5,用Relu激活
conv0 = tf.layers.conv2d(datas_placeholder, 20, 5, activation=tf.nn.relu)
# 定义max-pooling层,pooling窗口为2x2,步长为2x2
pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2])# 定义卷积层, 40个卷积核, 卷积核大小为4,用Relu激活
conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu)
# 定义max-pooling层,pooling窗口为2x2,步长为2x2
pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2])# 将3维特征转换为1维向量
flatten = tf.layers.flatten(pool1)# 全连接层,转换为长度为100的特征向量
fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)# 加上DropOut,防止过拟合
dropout_fc = tf.layers.dropout(fc, dropout_placeholdr)# 未激活的输出层
logits = tf.layers.dense(dropout_fc, num_classes)predicted_labels = tf.arg_max(logits, 1)# 利用交叉熵定义损失
losses = tf.nn.softmax_cross_entropy_with_logits(labels=tf.one_hot(labels_placeholder, num_classes),logits=logits
)
# 平均损失
mean_loss = tf.reduce_mean(losses)# 定义优化器,指定要优化的损失函数
optimizer = tf.train.AdamOptimizer(learning_rate=1e-2).minimize(losses)# 用于保存和载入模型
saver = tf.train.Saver()with tf.Session() as sess:if train:print("训练模式")# 如果是训练,初始化参数sess.run(tf.global_variables_initializer())# 定义输入和Label以填充容器,训练时dropout为0.25train_feed_dict = {datas_placeholder: datas,labels_placeholder: labels,dropout_placeholdr: 0.25}for step in range(300):#150_, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)if step % 10 == 0:print("step = {}\tmean loss = {}".format(step, mean_loss_val))saver.save(sess, model_path)print("训练结束,保存模型到{}".format(model_path))else:print("测试模式")# 如果是测试,载入参数saver.restore(sess, model_path)print("从{}载入模型".format(model_path))# label和名称的对照关系label_name_dict = {0: "0",1: "1",2: "2",3: "3",4: "4",5: "5",6: "6",7: "7",8: "8",9: "9",10: "A",11: "B",12: "C",13: "D",14: "E",15: "F",16: "G",17: "H",18: "I",19: "J",20: "K",21: "L",22: "M",23: "N",24: "P",25: "Q",26: "R",27: "S",28: "T",29: "U",30: "V",31: "W",32: "X",33: "Y",34: "Z"}# 定义输入和Label以填充容器,测试时dropout为0test_feed_dict = {datas_placeholder: datas,labels_placeholder: labels,dropout_placeholdr: 0}predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)len = predicted_labels_val.shape[0]num = 0# 真实label与模型预测labelfor fpath, real_label, predicted_label in zip(fpaths, labels, predicted_labels_val):# 将label id转换为label名real_label_name = label_name_dict[real_label]predicted_label_name = label_name_dict[predicted_label]print("{}\t{} => {}".format(fpath, real_label_name, predicted_label_name))if real_label == predicted_label:num = num + 1print("正确")else:print("错误***************************************************************************")print("正确率:{}% ,总个数:{},判断正确个数:{}".format(num / len * 100, len, num))

 

2019-06-26 15:58:18.709062: I tensorflow/core/common_runtime/process_util.cc:69] Creating new thread pool with default inter op setting: 4. Tune using inter_op_parallelism_threads for best performance.
测试模式
从model/image_model载入模型
test\0_1.jpg    0 => D
错误***************************************************************************
test\10_2.jpg    A => 1
错误***************************************************************************
test\11_0.jpg    B => B
正确
test\12_0.jpg    C => C
正确
test\13_0.jpg    D => D
正确
test\14_0.jpg    E => E
正确
test\15_0.jpg    F => E
错误***************************************************************************
test\16_0.jpg    G => G
正确
test\17_0.jpg    H => H
正确
test\18_0.jpg    I => I
正确
test\19_0.jpg    J => 2
错误***************************************************************************
test\1_0.jpg    1 => 1
正确
test\20_1.jpg    K => K
正确
test\21_0.jpg    L => L
正确
test\22_0.jpg    M => H
错误***************************************************************************
test\22_1.jpg    M => F
错误***************************************************************************
test\23_0.jpg    N => W
错误***************************************************************************
test\24_0.jpg    P => P
正确
test\25_0.jpg    Q => Q
正确
test\26_0.jpg    R => F
错误***************************************************************************
test\27_0.jpg    S => S
正确
test\28_0.jpg    T => T
正确
test\29_0.jpg    U => U
正确
test\2_1.jpg    2 => 2
正确
test\30_0.jpg    V => W
错误***************************************************************************
test\31_0.jpg    W => W
正确
test\32_0.jpg    X => X
正确
test\33_0.jpg    Y => Y
正确
test\34_0.jpg    Z => Z
正确
test\3_5.jpg    3 => 3
正确
test\4_0.jpg    4 => 4
正确
test\4_17.jpg    4 => 4
正确
test\5_2.jpg    5 => 5
正确
test\6_1.jpg    6 => 6
正确
test\7_1.jpg    7 => 7
正确
test\8_2.jpg    8 => 8
正确
test\8_4.jpg    8 => 8
正确
test\9_12.jpg    9 => 9
正确
正确率:76.31578947368422% ,总个数:38,判断正确个数:29

 

 

这篇关于字符是识别---11--源数据20*20--训练样本0~Z----基于TensorFlow+CNN实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044591

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat