扩散模型条件生成——Classifier Guidance和Classifier-free Guidance原理解析

2024-06-09 06:12

本文主要是介绍扩散模型条件生成——Classifier Guidance和Classifier-free Guidance原理解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、前言

从讲扩散模型到现在。我们很少讲过条件生成(Stable DIffusion曾提到过一点),所以本篇内容。我们就来具体讲一下条件生成。这一部分的内容我就不给原论文了,因为那些论文并不只讲了条件生成,还有一些调参什么的。并且推导过程也相对复杂。我们从一个比较简单的角度出发。

参考论文:Understanding Diffusion Models: A Unified Perspective (arxiv.org)

参考代码:

classifier guidance:GitHub - openai/guided-diffusion

classifier-free guidance:GitHub - coderpiaobozhe/classifier-free-diffusion-guidance-Pytorch: a simple unofficial implementation of classifier-free diffusion guidance

视频:[扩散模型条件生成——Classifier Guidance和Classifier-free Guidance原理解析-哔哩哔哩]

2、常用的条件生成方法

在diffusion里面,如何进行条件生成呢?我们不妨回忆一下在Stable Diffusion里面的一个常用做法。即在训练的时候。给神经网络输入一个条件。
L = ∣ ∣ ϵ − ϵ θ ( x t , t , y ) ∣ ∣ 2 L=||\epsilon-\epsilon_{\theta}(x_t,t,y)||^2 L=∣∣ϵϵθ(xt,t,y)2
里面的y就是条件。至于为什么有效,请看我之前写过的Stable DIffusion那篇文章。在此不过多赘述了。我们来讲这种方法所存在的问题。

很显然的,这种训练的方式,会有一个问题,那就是神经网络或许会学会忽略或者淡化掉我们输入的条件信息。因为就算我们不输入信息,他也照样能够生成。

接下来我们来讲两种更为流行的方法——分类指导器(Classifier Guidance) 和无分类指导器( Classifier-Free Guidance)

3、Classifier Guidance

为了简单起见。我们从分数模型的角度出发。

回忆一下在SDE里面的结论。其反向过程为
d x = [ f ( x , t ) − g ( t ) 2 ∇ x log ⁡ p t ( x ) ] d t + g ( t ) d w ˉ (1) \mathbb{dx}=\left[\mathbb{f(x,t)}-g(t)^2\nabla_x\log p_t(x)\right]\mathbb{dt}+g(t)\mathbb{d\bar w}\tag{1} dx=[f(x,t)g(t)2xlogpt(x)]dt+g(t)dwˉ(1)
如果施加条件的话,还是根据Reverse-time diffusion equation models - ScienceDirect这篇论文,可得条件生成时的反向SDE为
d x = [ f ( x , t ) − g ( t ) 2 ∇ x log ⁡ p t ( x ∣ y ) ] d t + g ( t ) d w ˉ (2) \mathbb{dx}=\left[\mathbb{f(x,t)}-g(t)^2\nabla_x\log p_t(x|y)\right]\mathbb{dt}+g(t)\mathbb{d\bar w}\tag{2} dx=[f(x,t)g(t)2xlogpt(xy)]dt+g(t)dwˉ(2)
我们利用贝叶斯公式,对 ∇ x log ⁡ p t ( x ∣ y ) \nabla x \log p_t(x|y) xlogpt(xy)进行处理
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( y ∣ x ) p t ( x ) p t ( y ) = ∇ x ( log ⁡ p t ( y ∣ x ) + log ⁡ p t ( x ) − log ⁡ p t ( y ) ) = ∇ x log ⁡ p t ( x ) + ∇ x log ⁡ p t ( y ∣ x ) \begin{aligned}\nabla_x \log p_t(x|y)=&\nabla_x\log\frac{p_t(y|x)p_t(x)}{p_t(y)}\\=&\nabla_x\left(\log p_t(y|x)+\log p_t(x)-\log p_t(y)\right)\\=&\nabla_x \log p_t(x)+\nabla_x\log p_t(y|x)\end{aligned}\nonumber xlogpt(xy)===xlogpt(y)pt(yx)pt(x)x(logpt(yx)+logpt(x)logpt(y))xlogpt(x)+xlogpt(yx)
第二个等号到第三个等号是因为对 log ⁡ p t ( y ) \log p_t(y) logpt(y)关于x求梯度等于0( log ⁡ p t ( y ) \log p_t(y) logpt(y)与x无关)

把它代入Eq.(2)可得
d x = [ f ( x , t ) − g ( t ) 2 ( ∇ x log ⁡ p t ( x ) + ∇ x log ⁡ p t ( y ∣ x ) ) ] d t + g ( t ) d w ˉ (3) \mathbb{dx}=\left[\mathbb{f(x,t)}-g(t)^2\left(\nabla_x\log p_t(x)+\nabla_x\log p_t(y|x)\right)\right]\mathbb{dt}+g(t)\mathbb{d\bar w}\tag{3} dx=[f(x,t)g(t)2(xlogpt(x)+xlogpt(yx))]dt+g(t)dwˉ(3)
对比Eq.(1)和Eq.(3)。我们不难发现,它们的差别,居然是只多了一个 ∇ x log ⁡ p t ( y ∣ x ) \nabla_x\log p_t(y|x) xlogpt(yx)

p t ( y ∣ x ) p_t(y|x) pt(yx)是什么?是以 x x x作为条件,时间为t对应条件y的概率。我们可以怎么求呢?该怎么求出来呢?

当然是使用神经网络了。也就是说,我们可以额外设定一个神经网络,该神经网络输入是 x t x_t xt,输出是条件为y的概率

所以,实际上我们现在需要训练两部分,一部分是 ∇ x log ⁡ p t ( x ) \nabla_x\log p_t(x) xlogpt(x),这我们在SDE中已经讲过该如何训练了。

另一个就是 ∇ x log ⁡ p t ( y ∣ x ) \nabla_x\log p_t(y|x) xlogpt(yx),他就是一个分类神经网络网络。训练好之后,我们就可以使用Eq.(3)通过不同的数值求解器,进行优化了。

作者在此基础上,又引入了一个控制参数 λ \lambda λ
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + λ ∇ x log ⁡ p t ( y ∣ x ) (4) \nabla_x \log p_t(x|y)=\nabla_x\log p_t(x)+\lambda\nabla_x\log p_t(y|x)\tag{4} xlogpt(xy)=xlogpt(x)+λxlogpt(yx)(4)
λ = 0 \lambda=0 λ=0,表示不加入任何条件。当 λ \lambda λ很大时,模型会产生大量附带条件信息的样本。

这种方法的一个缺点就是,需要额外学习一个分类器 p t ( y ∣ x ) p_t(y|x) pt(yx)

4、Classifier-Free Guidance

之前推出
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + ∇ x log ⁡ p t ( y ∣ x ) (5) \nabla_x \log p_t(x|y)=\nabla_x \log p_t(x)+\nabla_x\log p_t(y|x)\tag{5} xlogpt(xy)=xlogpt(x)+xlogpt(yx)(5)
把该式子代入Eq.(4)可得
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + λ ( ∇ x log ⁡ p t ( x ∣ y ) − ∇ x log ⁡ p t ( x ) ) = ∇ x log ⁡ p t ( x ) + λ ∇ x log ⁡ p t ( x ∣ y ) − λ ∇ x log ⁡ p t ( x ) = ( 1 − λ ) ∇ x log ⁡ p t ( x ) + λ ∇ x log ⁡ p t ( x ∣ y ) \begin{aligned}\nabla_x \log p_t(x|y)=&\nabla_x\log p_t(x)+\lambda\left(\nabla_x\log p_t(x|y)-\nabla_x\log p_t(x)\right)\\=&\nabla_x\log p_t(x)+\lambda\nabla_x\log p_t(x|y)-\lambda\nabla_x\log p_t(x)\\=&\left(1-\lambda\right)\nabla_x\log p_t(x)+\lambda\nabla_x\log p_t(x|y)\end{aligned}\nonumber xlogpt(xy)===xlogpt(x)+λ(xlogpt(xy)xlogpt(x))xlogpt(x)+λxlogpt(xy)λxlogpt(x)(1λ)xlogpt(x)+λxlogpt(xy)
此时我们注意到,当 λ = 0 \lambda=0 λ=0是,第二项完全为0,会忽略掉条件;当 λ = 1 \lambda=1 λ=1时,使用第二项,第二项就是附带有条件情况下的分布分数网络;而当 λ > 1 \lambda> 1 λ>1,模型会优化考虑条件生成样本,并且远离第一项的无条件分数网络的方向,换句话说,它降低了生成不使用条件信息的样本的概率,而有利于生成明确使用条件信息的样本。

事实上,如果你看了free-Classifier Guidance这篇论文,会发现我们的结论不一样。

其实论文里面的控制参数是 w w w,也就是说,Eq.(4)就变成了这样
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + w ∇ x log ⁡ p t ( y ∣ x ) \nabla_x \log p_t(x|y)=\nabla_x\log p_t(x)+w\nabla_x\log p_t(y|x) xlogpt(xy)=xlogpt(x)+wxlogpt(yx)
我们把控制参数改成 1 + w 1+w 1+w不会有任何影响
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + ( 1 + w ) ∇ x log ⁡ p t ( y ∣ x ) \nabla_x \log p_t(x|y)=\nabla_x\log p_t(x)+(1+w)\nabla_x\log p_t(y|x) xlogpt(xy)=xlogpt(x)+(1+w)xlogpt(yx)
把Eq.(5)代入该式子
∇ x log ⁡ p t ( x ∣ y ) = ∇ x log ⁡ p t ( x ) + ( 1 + w ) ( ∇ x log ⁡ p t ( x ∣ y ) − ∇ x log ⁡ p t ( x ) ) = ∇ x log ⁡ p t ( x ) + ( 1 + w ) ∇ x log ⁡ p t ( x ∣ y ) − ( 1 + w ) ∇ x log ⁡ p t ( x ) = ( 1 + w ) ∇ x log ⁡ p t ( x ∣ y ) − w ∇ x log ⁡ p t ( x ) (6) \begin{aligned}\nabla_x \log p_t(x|y)=&\nabla_x\log p_t(x)+(1+w)\left(\nabla_x\log p_t(x|y)-\nabla_x\log p_t(x)\right)\\=&\nabla_x\log p_t(x)+(1+w)\nabla_x\log p_t(x|y)-(1+w)\nabla_x\log p_t(x)\\=&(1+w)\nabla_x\log p_t(x|y)-w\nabla_x\log p_t(x)\end{aligned}\tag{6} xlogpt(xy)===xlogpt(x)+(1+w)(xlogpt(xy)xlogpt(x))xlogpt(x)+(1+w)xlogpt(xy)(1+w)xlogpt(x)(1+w)xlogpt(xy)wxlogpt(x)(6)
这就是原论文里面的结论。

那么接下来,我们来探讨一下该如何去训练。

对于 ∇ x log ⁡ p t ( x ) \nabla_x\log p_t(x) xlogpt(x),这个不用说了,之前我们训练的就是这个;如何计算 ∇ x log ⁡ p t ( x ∣ y ) \nabla_x\log p_t(x|y) xlogpt(xy)呢,它实际上就是在给定y的情况下,求出 p t ( x ∣ y ) p_t(x|y) pt(xy)。那我们可以怎么做呢?

在NCSN,我们是使用一个加噪分布 q ( x ~ ∣ x ) q(\tilde x|x) q(x~x)取代 p ( x ) p(x) p(x),而从让它是可解的。

对于 p t ( x ∣ y ) p_t(x|y) pt(xy),即便是加多了一个条件之后,我们仍然建模为 q ( x ~ ∣ x ) q(\tilde x|x) q(x~x),也就是说,我们仍然把它建模成一个正向加噪过程。因此,无论是否增加条件。最终的损失函数结果都是
L = ∣ ∣ s θ − ∇ x log ⁡ q ( x ~ ∣ x ) ∣ ∣ 2 = ∣ ∣ s θ − ∇ x log ⁡ q ( x t ∣ x 0 ) ∣ ∣ 2 L=||s_\theta-\nabla_x\log q(\tilde x|x)||^2=||s_\theta-\nabla_x\log q(x_t|x_0)||^2 L=∣∣sθxlogq(x~x)2=∣∣sθxlogq(xtx0)2
后者是通过SDE统一的结果(我在SDE那一节讲过)

那该如何体现条件y呢?其实我们在第二节的时候已经说过了,就是在里面神经网络的输出加入一个条件y。
L = ∣ ∣ s θ ( x t , t , y ) − ∇ x log ⁡ q ( x t ∣ x 0 ) ∣ ∣ 2 (7) L=||s_\theta(x_t,t,y)-\nabla_x\log q(x_t|x_0)||^2\tag{7} L=∣∣sθ(xt,t,y)xlogq(xtx0)2(7)
而不施加条件的时候,长这样
L = ∣ ∣ s θ ( x t , t ) − ∇ x log ⁡ q ( x t ∣ x 0 ) ∣ ∣ 2 (8) L=||s_\theta(x_t,t)-\nabla_x\log q(x_t|x_0)||^2\tag{8} L=∣∣sθ(xt,t)xlogq(xtx0)2(8)
由Eq.(5)可知,我们需要训练两种情况,一种是有条件的,对应Eq.(7);另外一种是无条件的,对应Eq.(8)。

理论上,我们其实也是要训练两个神经网络。但实际上,我们可以把他们结合成一种神经网络。

具体操作就是把无条件的情况作为一种特例。

当我们训练有条件的神经网络的时候,会照样把条件输入进网络里面。而训练无条件的时候,我们构造一个无条件的标识符,把它作为条件输入给神经网络,比如对于所有无条件的情况,我都构造一个0作为条件输入到神经网络里面。通过这种方式,我们就可以把两个网络变成一个网络了,

对于损失函数,直接使用Eq.(7)。我们在SDE里面讲过 ∇ x log ⁡ p ( x ) = − 1 σ ϵ \nabla_x \log p(x)=-\frac{1}{\sigma}\epsilon xlogp(x)=σ1ϵ。所以我们最终我们把预测噪声,变成了预测分数。我们同样可以把它变回来,变成预测分数
L = ∣ ∣ ϵ − ϵ θ ( x t , t , y ) ∣ ∣ 2 L=||\epsilon-\epsilon_{\theta}(x_t,t,y)||^2 L=∣∣ϵϵθ(xt,t,y)2
所以损失函数就变成了这样。在训练的时候,作者设定一个大于等于0,小于等于1的超参数 p u n c o n d p_{uncond} puncond,它的作用就是判断是否需要输入条件(从0-1分布采样一个值,大于 p u n c o n d p_{uncond} puncond则使用条件,反之则不使用)。也就是说,这相当于dropout一样,随机舍弃掉一些条件,把他们作为无条件的情况(因为我们既要学习有条件的,又要学习无条件的)。所以,最终的训练过程就是这样

在这里插入图片描述

其中里面的 λ \lambda λ你就当作是时刻t吧(其实不是,其实是时刻t的噪声(噪声的初始化不一样,不是传统的等差数列,是用三角函数初始化的)。由于与本篇内容无关,故而忽略),c是条件。

同样的,采用过程使用Eq.(6)的结构进行采样

在这里插入图片描述

5、结束

在这里插入图片描述

这篇关于扩散模型条件生成——Classifier Guidance和Classifier-free Guidance原理解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044400

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑