转型AI产品经理(4):“认知负荷”如何应用在Chatbot产品

2024-06-09 02:36

本文主要是介绍转型AI产品经理(4):“认知负荷”如何应用在Chatbot产品,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

认知负荷理论主要探讨在学习过程中,人脑处理信息的有限容量以及如何优化信息的呈现方式以促进学习。认知负荷定律认为,学习者的工作记忆容量是有限的,而不同类型的认知任务会对工作记忆产生不同程度的负荷,从而影响学习效果。以下是对认知负荷定律的简要介绍:

1、认知负荷的三种类型:

    • 内在认知负荷:由任务本身的复杂性决定,是无法减少的。例如,学习复杂的数学公式自然会带来较高的内在认知负荷。

    • 外在认知负荷:由学习环境和教学材料的设计引起,可以通过优化教学设计来降低。不恰当的教学方法会无谓地增加认知负荷,而良好的设计则能减少外在认知负荷。

    • 关联认知负荷当学习材料被有效组织,与学习者已有的知识结构(图式)相匹配时,可以减少认知负荷,帮助信息更容易被吸收进入长时记忆。

2、工作记忆限制:工作记忆是信息暂时储存和加工的地方,它的容量有限,一般认为能同时处理的信息单元在5至9个之间(这个数字被称为米勒的“神奇数字7±2”)。因此,过多或过于复杂的信息会超出工作记忆的处理能力,导致学习效率下降。

3、图式理论:认知负荷理论强调通过构建和利用“图式”(即心理结构,用于组织和存储信息)来减轻工作记忆的负担。当学习材料与已有图式相结合时,信息处理更为高效,可以有效降低认知负荷。

长期以来,认知负荷理论因其广泛的适用性和实用性,在多个领域中得到了应用,包含教育、用户体验设计、职场培训,体育训练等领域。认知负荷定律提醒我们在设计学习材料、教学策略或产品交互时,要充分考虑人类认知的局限性,通过科学的方法减少不必要的认知负荷,从而促进有效学习和高效信息处理。那对于设计一款Chatbot的聊天机器人的产品来说,我们要如何将其思想应用到产品设计上呢?

Chatbot即聊天机器人,它是一种基于人工智能和自然语言处理技术的交互系统,它能够模拟人类对话,实现自动化服务和信息传递。它的设计通常涉及复杂的对话逻辑设计、用户意图识别、语音或文本交互、机器学习模型训练和持续优化等。应用好“认知负荷”理论可以显著提升Chatbot产品的用户体验,让用户在与Chatbot交互时不会感到信息过载或困惑,应用时包含但不限于以下场景:

  1. 简化交互流程:认知负荷理论强调减少用户在执行任务时需要记忆和处理的信息量。因此,在Chatbot设计中,应尽量简化对话流程,避免冗长或复杂的指令,确保用户能轻松理解并快速做出反应。同时,避免过多的按钮、链接和装饰元素,确保界面清晰易读。

  2. 清晰明确的提示与反馈:在用户输入信息后,提供直观且即时的反馈,帮助用户理解Chatbot的状态和他们的请求是否被正确理解。使用明确的语言,避免行业术语或模糊的表达,减少用户在解读反馈时的认知成本。

  3. 分段呈现信息:根据信息处理能力的限制,Chatbot应避免一次性提供过多信息,而应采用逐步揭示的方式,分段提供内容,使用户可以逐步消化吸收。分段提示时可采用只展示当前步骤相关的信息或按照重要性和紧急程度排序信息,先提供最关键的信息,逐步引导用户深入了解细节等方式。

  4. 个性化交互:通过分析用户的历史交互数据,Chatbot可以适应用户的偏好和需求,提供个性化的建议和回应,从而减少用户在选择过程中的决策负担。

  5. 视觉辅助:在适当情况下,利用图表或图像等视觉元素来辅助文字信息,可以帮助用户更快理解和记忆信息,降低认知负荷,或者是结合语音、文字和图像等多种交互方式,减少用户对单一感官的依赖。

  6. 适应性学习:设计Chatbot可使其能够根据用户的反馈和理解水平,自适应调整对话的难度,确保用户能够轻松跟随对话进程。此外,如果发现用户对某个话题或指令询问频繁,Chatbot可以主动优化对该主题的响应策略,简化未来类似情境下的交互流程。

    不同定位的Chatbot在具体的设计上还会因为业务的不同而有很多细节的变化。比如,在客户支持中,Chatbot可以通过逐步引导用户解决问题,提供相关的帮助文档链接,并在每一步提供清晰的反馈,确保用户理解每个步骤。而在教育类的Chatbot中,Chatbot可以通过分段讲解课程内容,提供实时答疑和个性化学习建议,帮助学生更高效地学习。

    在Chatbot的产品设计中通过应用“认知负荷”理论的思想可以显著提升产品的用户体验,让用户在与Chatbot交互时能够轻松理解和处理信息,提高交互效率和用户满意度。如果你还有其他的“认知负荷”理论应用场景,欢迎分享交流!



 

这篇关于转型AI产品经理(4):“认知负荷”如何应用在Chatbot产品的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044018

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#