深度解析:ChatGPT全面测评——功能、性能与用户体验全景剖析

本文主要是介绍深度解析:ChatGPT全面测评——功能、性能与用户体验全景剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从去年底至今,由 OpenAI 发布的大规模语言模型 ChatGPT 引发了几乎所有科技领域从业者的高度关注。据瑞银集团的报告显示,自 2023 年 1 月起,仅两个月内,ChatGPT 的月活用户数便超过了 1 亿。

ChatGPT 被誉为“最强 AI”,这归功于其展示出的近似于人类的思考与回答模式,明显增强了对不同情境的适应能力。这种“更接近人类的思考方式”标志着 AI 语言模型的发展由量变走向了质变。

此外,ChatGPT 的火爆也带动了 AI 概念股的上涨,并促使业界重新评估了 AI 行业的巨大发展潜力。接着,搜索引擎市场也掀起了一场大战,谷歌 CEO Sundar Pichai 在官方博客上宣布推出谷歌的新一代 AI 对话系统 Bard 来应对 ChatGPT;同时,百度宣布将推出其类似 ChatGPT 的产品——文心一言(ERNIE Bot),计划在三月份对外开放测试;微软也更新了自家搜索引擎 Bing,该版本的底层 AI 技术正是 ChatGPT,还为 Edge 浏览器增添了新的 AI 增强功能,承诺将带来前所未有的网络浏览和在线信息检索体验。

为了全方位多维度评估 ChatGPT 的能力,InfoQ 测评室参照了中国信息通信研究院与中国人工智能产业发展联盟的相关标准和评估方法,从功能、性能、用户体验等多个方面对 ChatGPT 进行了评估。让我们一起看看这款应用是否真如传说中那么强大。

**第一部分:基础功能验证**

**自然语言输入**

在中文、俄语、日语、英语以及网络用语的识别测试中,ChatGPT 表现出了较好的上下文联系能力。

结论:ChatGPT 能够理解用户前后文的问题与补充,整个交互过程较为流畅。但在对网络用语、口语或省略关键成分的句子的理解上,可能不如预期。

**机器语言输入**

通过基础编程题目“鸡兔同笼”,测试 ChatGPT 在不同编程语言间的切换及代码格式、逻辑、注释的能力。

结论:高峰时段测试可能出现识别错误,非高峰时段代码通常准确可运行。只要对问题理解正确,生成的代码基本可行。对于未明确表达需求的句子,ChatGPT 也能很好理解。

**第二部分:基础性能测试**

**百科检索**

结论:对常规检索问题,ChatGPT 能给出较全面的答案。作为对话伙伴时,其表现优于拟人化对话。

**数学问答**

结论:对复杂数学问题的理解与推理能力不足。在被质疑时,ChatGPT 快速承认错误,并分析原因,但未能改正错误。

**文学交流**

结论:相比数学问题,ChatGPT 在文科问题上表现更佳。但用户需谨慎验证答案的准确性,有时给出的链接内容并不存在。

**知识推理**

结论:对已确定事实和理论

猜测均能提供充分、条理清晰的回答,体现出生成式 AI 的关键特征。

**第三部分:用户体验**

结论:对于开放性问题,ChatGPT 能提供有参考价值的答案,但并不适合直接作为标准答案采纳,其趣味性略显不足。

**总体结论**

功能体验层面:ChatGPT 具备基本功能,逻辑性强,能够给出看似正确且合理的答案。然而,对于具体内容的搜索,其准确性不能完全保证,仍需提问者自行判断。目前而言,将其与搜索引擎结合使用仍需解决许多问题。

尽管 ChatGPT 的对话能力源自于 RLHF(即从人类反馈中强化学习),这种模式可能会牺牲上下文学习的能力,以增加对话历史的建模和信息量。实际体验表明,简单的多轮对话处理相对容易。

在数学问答方面,将整个问题直接提交给 ChatGPT 往往不会得到正确答案,但通过将问题拆解成小问题,逐步引导 ChatGPT,可以更有效地获得正确答案。

使用场景层面:目前已有开发者利用 ChatGPT 编写简单代码,但处理复杂业务场景的代码时还需优化提问方式,将复杂问题分解为简单问题。

在企业级应用层面,已有企业将 ChatGPT 的能力整合至 BI、数据库等系统中,用户可以通过自然语言提出问题并获取答案。

此外,目前通过 ChatGPT 生成的高级词汇可用于进一步通过图像生成软件创建图像,通常这种方式的结果优于直接与图像生成软件对话的结果。

其他需注意事项:在高峰时间段(上午10:00至下午17:00),ChatGPT 提供错误答案的可能性更高。ChatGPT 本质上是 AIGC(人工智能生成内容),更适合创作类内容,对于既定事实内容的搜索能力还需进一步提高。

   背景:免费AI问答交流-GPT

这篇关于深度解析:ChatGPT全面测评——功能、性能与用户体验全景剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1043038

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

TP-Link PDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务

《TP-LinkPDDNS服将于务6月30日正式停运:用户需转向第三方DDNS服务》近期,路由器制造巨头普联(TP-Link)在用户群体中引发了一系列重要变动,上个月,公司发出了一则通知,明确要求所... 路由器厂商普联(TP-Link)上个月发布公告要求所有用户必须完成实名认证后才能继续使用普联提供的 D

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek