day 6 第三章 哈希表part01

2024-06-08 15:52
文章标签 第三章 哈希 day part01

本文主要是介绍day 6 第三章 哈希表part01,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

day 6 第三章 哈希表part01
● 哈希表理论基础
● 242.有效的字母异位词
● 349. 两个数组的交集
● 202. 快乐数
● 1. 两数之和

● 哈希表理论基础

  • 遇到了要快速判断一个元素是否出现集合里的时候 && 判断一个元素是否出现过的场景,就要考虑哈希法。
  • 哈希法是牺牲了空间换取了时间,因为我们要使用额外的数组,set或者是map来存放数据,才能实现快速的查找。
  • 哈希法,常见的三种数据结构:数组、set (集合)、map(映射)

242.有效的字母异位词

  • 用的是数组
  • 定义一个数组,来记录字符串里字符出现的次数。
  • 字符串s的时候,将 s[i] - ‘a’ 所在的元素做+1 操作即可,统计字符串s中字符出现的次数。
  • 在遍历字符串t的时候,对t中出现的字符映射哈希表索引上的数值再做-1的操作。
    -最后检查一下,record数组如果有的元素不为零0,说明字符串s和t一定是谁多了字符或者谁少了字符,return false。
class Solution {
public:bool isAnagram(string s, string t) {int record[26] = {0};for (int i = 0; i < s.size(); i++) {// 并不需要记住字符a的ASCII,只要求出一个相对数值就可以了record[s[i] - 'a']++;}for (int i = 0; i < t.size(); i++) {record[t[i] - 'a']--;}for (int i = 0; i < 26; i++) {if (record[i] != 0) {// record数组如果有的元素不为零0,说明字符串s和t 一定是谁多了字符或者谁少了字符。return false;}}// record数组所有元素都为零0,说明字符串s和t是字母异位词return true;}
};

349. 两个数组的交集

set 方法

  • 使用数组来做哈希的题目,是因为题目都限制了数值的大小。
  • 而这道题目没有限制数值的大小,就无法使用数组来做哈希表了。
  • 如果哈希值比较少、特别分散、跨度非常大,使用数组就造成空间的极大浪费。
  • 此时就要使用另一种结构体了,set ,关于set,C++ 给提供了如下三种可用的数据结构:
  • std::set、std::multiset、std::unordered_set
  • std::setstd::multiset底层实现都是红黑树,std::unordered_set的底层实现是哈希表, 使用 unordered_set读写效率是最高的,数据不可重复,所以选择unordered_set
  • 先转化后比较
class Solution {
public:vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {unordered_set<int> result_set; // 存放结果,之所以用set是为了给结果集去重unordered_set<int> nums_set(nums1.begin(), nums1.end());for (int num : nums2) {// 发现nums2的元素 在nums_set里又出现过if (nums_set.find(num) != nums_set.end()) {result_set.insert(num);}}return vector<int>(result_set.begin(), result_set.end());}
};

这篇关于day 6 第三章 哈希表part01的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042631

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

哈希表的底层实现(1)---C++版

目录 哈希表的基本原理 哈希表的优点 哈希表的缺点 应用场景 闭散列法 开散列法 开放定值法Open Addressing——线性探测的模拟实现 超大重点部分评析 链地址法Separate Chaining——哈希桶的模拟实现 哈希表(Hash Table)是一种数据结构,它通过将键(Key)映射到值(Value)的方式来实现快速的数据存储与查找。哈希表的核心概念是哈希

哈希表的封装和位图

文章目录 2 封装2.1 基础框架2.2 迭代器(1)2.3 迭代器(2) 3. 位图3.1 问题引入3.2 左移和右移?3.3 位图的实现3.4 位图的题目3.5 位图的应用 2 封装 2.1 基础框架 文章 有了前面map和set封装的经验,容易写出下面的代码 // UnorderedSet.h#pragma once#include "HashTable.h"

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

Linux基础入门 --9 DAY

文本处理工具之神vim         vi和vim简介 一、vi编辑器 vi是Unix及类Unix系统(如Linux)下最基本的文本编辑器,全称为“visual interface”,即视觉界面。尽管其名称中包含“visual”,但vi编辑器实际上工作在字符模式下,并不提供图形界面。vi编辑器以其强大的功能和灵活性著称,是Linux系统中不可或缺的工具之一。 vi编辑器具有三种主要的工作模

PHP: 深入了解一致性哈希

前言 随着memcache、redis以及其它一些内存K/V数据库的流行,一致性哈希也越来越被开发者所了解。因为这些内存K/V数据库大多不提供分布式支持(本文以redis为例),所以如果要提供多台redis server来提供服务的话,就需要解决如何将数据分散到redis server,并且在增减redis server时如何最大化的不令数据重新分布,这将是本文讨论的范畴。 取模算法 取模运

day-50 求出最长好子序列 I

思路 二维dp,dp[i][h]表示nums[i] 结尾,且有不超过 h 个下标满足条件的最长好子序列的长度(0<=h<=k),二维数组dp初始值全为1 解题过程 状态转换方程: 1.nums[i]==nums[j],dp[i,h]=Math.max(dp[i,h],dp[j,h]+1) 2.nums[i]!=nums[j],dp[i,h]=Math.max(dp[i,h],dp[j,h-1

哈希表题总结

哈希表题总结 hot100两数之和字母异位词分组最长连续序列 hot100 两数之和 题目链接: 1.两数之和 代码: class Solution {public int[] twoSum(int[] nums, int target) {Map<Integer,Integer> map = new HashMap<>();int n = nums.length;for