时间序列新范式!多尺度+时间序列,刷爆多项SOTA

2024-06-07 19:44

本文主要是介绍时间序列新范式!多尺度+时间序列,刷爆多项SOTA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当我们面对复杂模式和多变周期的应用场景(比如金融市场分析)时,采用多尺度时间序列来做分析和预测是个更好的选择。

这是因为:传统时序方法通常只用固定时间窗口来提取信息,难以适应不同时间尺度上的模式变化。但多尺度时间序列通过调整时间分辨率和距离,不仅能捕捉到时序的局部细节,还能把握其长期趋势和周期性变化。这就大大提升了模型对新数据集的适应性和不同应用场景迁移能力,让我们能够实现更精确的时间序列预测。

举个比较热门的例子:Pathformer。
Pathformer结合了时间分辨率和时间距离的概念,采用自适应Pathways来根据输入时序的时间特征动态提取和聚合多尺度特征,取得了SOTA预测效果。

除此之外,研究者们已经开发了很多创新的多尺度时间序列方案,我挑选了最新的10篇给各位作参考,开源代码贴心附上,欢迎各位讨论~

论文原文以及开源代码需要的同学看文末

Multi-Scale Transformer Pyramid Networks for Multivariate Time Series Forecasting

方法:论文提出了一种多尺度Transformer金字塔网络(MTPNet)用于多元时间序列(MTS)预测。MTPNet通过将MTS数据分解为季节和趋势组件来处理时间依赖性,其中线性层用于直接从历史数据生成趋势组件的预测。同时,MTPNet用于建模时间依赖性并生成季节组件的预测。MTPNet利用多个Transformer来捕捉不同尺度上的时间依赖性,然后将这些多尺度潜在表示连接起来,并应用CNN层来生成季节组件的预测。

创新点:

  • 提出了一种维度无关嵌入技术,用于捕捉短期时间依赖关系。该技术将多元时间序列数据投影到高维空间中,同时保留原始的时间步长和变量维度。

  • 提出了一种新颖的多尺度Transformer金字塔网络(MTPNet),专门用于有效地捕捉多个不受限制的尺度上的时间依赖关系。该网络利用来自不同尺度Transformer的多尺度潜在表示来进行预测。

  • MTPNet尤其在包含细粒度信息的数据集中表现出色,能够有效捕捉从细粒度到粗粒度尺度的各种时间依赖关系。这一发现突出了MTPNet在分析以分钟为单位采样的多元时间序列数据方面的潜力。

Time Series Prediction Based on Multi-Scale Feature Extraction

方法:论文提出了一种基于Transformer模型的多尺度特征提取模型MSFformer,用于解决长时间序列预测任务中长期依赖和短期特征提取不足的问题。研究通过引入一种新颖的特征卷积方法在CSCM中获取粗粒度信息,通过具有指定步长的卷积操作构建金字塔形数据结构,连续提取时间特征信息。

创新点:

  • MSFformer模型:提出了一种基于Transformer模型的多尺度特征提取模型,用于处理长期时间序列预测任务,能够有效提取长期依赖关系和短期特征,提高了模型的准确性和效率。

  • Skip-PAM组件:引入了Skip-PAM组件,通过多层级的注意力机制,在不同时间步长上处理输入数据,从而捕捉不同粒度的时间依赖关系,既能关注短期、细粒度的模式,又能捕捉宏观趋势和周期性。该组件有效提高了模型的预测能力。

HiMTM: Hierarchical Multi-Scale Masked Time Series Modeling for Long-Term Forecasting

方法:论文介绍了一种用于长期预测的分层多尺度遮蔽时间序列建模方法(HiMTM)。该方法包括分层多尺度Transformer(HMT)、解耦编码器-解码器(DED)、多尺度遮蔽重构(MMR)和跨尺度注意力微调(CSA-FT)等四个核心模块。

创新点:

  • 引入了层次多尺度Transformer,通过层次分割更精细的补丁,增强了处理具有多尺度特征的时间序列的能力。这种方法提供了多尺度特征提取能力,为掩蔽时间序列建模提供了更好的指导信号。

  • 在每个编码器层次上实现了专门用于重建掩蔽部分的解码器。这种多层次方法提供了不同层次的监督信号,从而更有效地指导预训练过程。这种方法克服了固定尺度重建的局限性,可以为时间序列提供多阶段的指导信号,更好地对时间序列进行建模。

MSHyper: Multi-Scale Hypergraph Transformer for Long-Range Time Series Forecasting

方法:本文提出了一种用于长期时间序列预测的多尺度超图Transformer模型MSHyper。通过引入H-HGC模块来建立超图和超边图,以提供高阶交互建模的基础。通过TMP机制来聚合高阶模式信息,并学习不同尺度时间模式之间的交互强度。

创新点:

  • H-HGC module:通过引入H-HGC模块,作者提出了一种建模不同尺度时间模式之间高阶相互作用的方法。该模块能够为模型提供基础,用于建模高阶模式之间的相互作用。

  • TMP mechanism:作者提出了TMP机制,用于聚合高阶模式信息,并学习不同尺度时间模式之间的相互作用强度。该机制通过三个消息传递阶段来实现。

  • 作者提出了一种多尺度超图Transformer框架,用于建模不同尺度时间模式之间的高阶相互作用。该框架引入了多尺度超图和超边图,并采用三阶段消息传递机制来聚合模式信息和学习相互作用强度。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“多尺度时序”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于时间序列新范式!多尺度+时间序列,刷爆多项SOTA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040125

相关文章

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit