orbslam2代码解读(1):数据预处理过程

2024-06-07 06:20

本文主要是介绍orbslam2代码解读(1):数据预处理过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写orbslam2代码解读文章的初衷

首先最近陆陆续续花了一两周时间学习视觉slam,因为之前主要是做激光slam,有一定基础所以学的也比较快,也是看完了视觉14讲的后端后直接看orbslam2的课,看的cvlife的课(课里大部分是代码的解读所以还是需要一定的视觉slam基础),但是说实话课是看完了,其实还是会有一些疑问,想着通过自己整体再梳理一遍,加深印象的同时能够解决自己的疑惑。最后一点这个课的课件真的乱!!!最好通过自己的整理把整个框架串起来理解。后续的代码讲解流程主要围绕单目来展开,因为单目相对而言过程更复杂,而双目和rgbd因为有深度信息,所以了解单目之后,它们的处理过程也更容易了解

论文代码的整体框架图

原论文的插图:
在这里插入图片描述
cvlife课中转换成中文的框架图:
在这里插入图片描述
内容都是一致的,分成三个主要的线程:

  1. 跟踪tracking线程。求解当前图像帧在世界坐标系下的位姿,处理的是任意普通帧,完成定位的功能。
  2. 局部建图localmapping线程。根据产生的新关键帧产生新的地图点,以便后续跟踪的时候pnp的时候用,还有需要局部BA(只优化局部关键帧的位姿)。
  3. 回环Loop closing线程。根据localmapping线程传过来的关键帧进行回环检测,如果有候选回环帧就计算sim3,修正当前关键帧及其共视关键帧的位姿和地图点,然后进行本质图优化(仅优化位姿),最后就是全局BA(优化地图点和位姿)。

SLAM系统的运行流程

主函数

首先看mono_tum.cc 简化版的主函数(单目情况):

int main(int argc, char **argv)
{LoadImages(strFile, vstrImageFilenames, vTimestamps);ORB_SLAM2::System SLAM(argv[1],argv[2],ORB_SLAM2::System::MONOCULAR,true);for(int ni=0; ni<nImages; ni++){im = cv::imread();SLAM.TrackMonocular(im,tframe);}SLAM.Shutdown();SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory.txt");
}
  1. 声明了一个单目的SLAM对象。
  2. 遍历数据集的图像并且传给SLAM对象的单目track函数。
  3. 最后关闭SLAM并且保存关键帧的轨迹。

后续调用的函数

SLAM.TrackMonocular(im,tframe)

这个SLAM.TrackMonocular(im,tframe);函数里主要是通过mpTracker来进行跟踪并且最终返回当前图像帧的位姿估计结果。

	//获取相机位姿的估计结果cv::Mat Tcw = mpTracker->GrabImageMonocular(im,timestamp);

mpTracker->GrabImageMonocular(im,timestamp)

这个mpTracker->GrabImageMonocular(im,timestamp)函数处理过程:

  1. 如果图像是彩色图,就转成灰度图
  2. 如果当前帧是初始化的帧,那么在构建Frame的时候,提取orb特征点数量为正常的两倍(目的就是能够在初始化的时候有更多匹配点对),如果是普通帧,就正常构建Frame。
  3. 接着就是调用tracking线程中的Track()函数。(这个下一篇再描述)
  4. 返回当前图像帧的位姿估计结果。
    这个mpTracker->GrabImageMonocular(im,timestamp)函数对应第3、4步骤
    // Step 3 :跟踪Track();//返回当前帧的位姿return mCurrentFrame.mTcw.clone();

数据处理流程

数据处理主要发生在mpTracker->GrabImageMonocular(im,timestamp)函数中第2步:根据当前帧灰度图构造Frame对象。

   // Step 2 :构造Frame//判断该帧是不是初始化if(mState==NOT_INITIALIZED || mState==NO_IMAGES_YET) //没有成功初始化的前一个状态就是NO_IMAGES_YETmCurrentFrame = Frame(mImGray,timestamp,mpIniORBextractor,      //初始化ORB特征点提取器会提取2倍的指定特征点数目mpORBVocabulary,mK,mDistCoef,mbf,mThDepth);elsemCurrentFrame = Frame(mImGray,timestamp,mpORBextractorLeft,     //正常运行的时的ORB特征点提取器,提取指定数目特征点mpORBVocabulary,mK,mDistCoef,mbf,mThDepth);

Frame的构造流程

step1

普通帧的id自增,注意普通帧和关键帧的id并不一样,它们分别是Frame和KeyFrame类中的一个静态变量,普通帧的id可能只是为了统计处理了多少个图像,而关键帧的id需要结合后续的回环检测和全局BA,又或者是共视关键帧等等去使用。

step2

设置图像金字塔的参数。根据配置文件去设置,我看到TUM1.yaml是金字塔层级8,缩放系数是1.2。

step3

根据灰度图提取ORB特征点。提取的代码主要是在ORBextractor.cc中的括号运算符重载函数中。

/*** @brief 用仿函数(重载括号运算符)方法来计算图像特征点* * @param[in] _image                    输入原始图的图像* @param[in] _mask                     掩膜mask* @param[in & out] _keypoints                存储特征点关键点的向量* @param[in & out] _descriptors              存储特征点描述子的矩阵*/
void ORBextractor::operator()( InputArray _image, InputArray _mask, 
vector<KeyPoint>& _keypoints,OutputArray _descriptors)

这个函数的步骤如下:

  1. 检查图像有效性,如果为空就退出。
  2. 构建图像金字塔:
    2.1按照缩放系数获得本级金字塔的图像,并且扩展图像的边界。(图中说的比较清晰了,一个是为了提取fast特征点预留的,另一个是为了高斯模糊预留的)
    在这里插入图片描述
    2.2最终得到8个图像vector<Mat>的容器,用于后续提取特征点。
  3. 计算图像的特征点
    3.1 将每个金字塔图层的图像按照网格一个一个来进行FAST点的提取,如下面红色网格。
    在这里插入图片描述
    提取FAST角点的过程可以看下面的图:
    在这里插入图片描述
  • 选取像素点p,灰度为 I p I_p Ip

  • 设定一个阈值T

  • 以像素点p为圆心,选择半径为3圆上的16个像素点

  • 遍历16个像素点,如果有连续N个点的亮度大于 I p + T I_p+T Ip+T I p − T I_p-T IpT,认为p是特征点

  • 对每一个像素重复上面的操作

    3.2 将每个金字塔图层的特征点数量根据四叉树的方法,平均分布特征点,四叉树的结果如下图所示:(最后每个网格留下质量最好的点)
    在这里插入图片描述
    需要注意的是,每个金字塔因为长宽不同,所以根据金字塔图像长度的不同,将每次普通帧需要提取设定的点数(配置文件中是1000个),按照公式设定每个金字塔图像保留多少个特征点:
    在这里插入图片描述
    3.3 根据灰度质心法,计算每个金字塔图层中特征点的方向。这个是为了让后面的brief描述子具有旋转不变性的。去特征点周围半径为HALF_PATCH_SIZE的像素来计算局部图像的质心,公式如下:
    m 10 = ∑ x = − R R ∑ y = − R R x I ( x , y ) m 01 = ∑ x = − R R ∑ y = − R R y I ( x , y ) \begin{aligned} & m_{10}=\sum_{x=-R}^R \sum_{y=-R}^R x I(x, y) \\ & m_{01}=\sum_{x=-R}^R \sum_{y=-R}^R y I(x, y)\end{aligned} m10=x=RRy=RRxI(x,y)m01=x=RRy=RRyI(x,y)
    m 00 = ∑ x = − R R ∑ y = − R R I ( x , y ) m_{00}=\sum_{x=-R}^R \sum_{y=-R}^R I(x, y) m00=x=RRy=RRI(x,y)
    得到质心的位置:
    C = ( c x , c y ) = ( m 10 m 00 , m 01 m 00 ) C=\left(c_x, c_y\right)=\left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right) C=(cx,cy)=(m00m10,m00m01)
    最后根据质心位置计算当前特征点的方向:
    θ = arctan ⁡ 2 ( c y , c x ) = arctan ⁡ 2 ( m 01 , m 10 ) \theta=\arctan 2\left(c_y, c_x\right)=\arctan 2\left(m_{01}, m_{10}\right) θ=arctan2(cy,cx)=arctan2(m01,m10)
    在这部分的计算中,为了加快计算质心的位置,程序里是根据提前算好的u_max同时对两行进行计算,具体的代码就不详细展开了。
    这里留下一个疑问:这里计算质心的PATCH的大小,每个金字塔图层都用了一样的大小,PATCH的大小是30。这应该需要根据金字塔图层来改变?

  • 将每一层金字塔图像进行高斯模糊后(高斯模糊有利于减少噪点的影响),将保留下来的每个特征点,都计算它们的brief描述子,这个描述子结合了特征点的方向,所以最终具备旋转不变性。
    在这里插入图片描述
    brief描述子的计算过程:

  • 在关键点的周围以一定模式选取N个点对(在代码中是256个点对)

  • τ ( p ; x , y ) : = { 1 if  p ( x ) < p ( y ) 0 otherwise  \tau(\mathbf{p} ; \mathbf{x}, \mathbf{y}):= \begin{cases}1 & \text { if } \mathbf{p}(\mathbf{x})<\mathbf{p}(\mathbf{y}) \\ 0 & \text { otherwise }\end{cases} τ(p;x,y):={10 if p(x)<p(y) otherwise  根据公式计算每一个位的数,一共是256位描述子
    注意:这256个点对是预先设定好在程序中的,应该是orbslam2作者通过机器学习得到的结果。最后就是根据这256对索引取值的时候,需要用上前面计算的特征点角度,具体操作如下图所示,256对点本来在图像的坐标系上,需要转到PQ为X轴的坐标系上,再计算brief描述子,这时候的brief描述子就具备了旋转不变性。在这里插入图片描述

step4

通过opencv,对图像进行畸变矫正。其实就是根据标定好的畸变矫正系数 k 1 k_1 k1 k 2 k_2 k2 p 1 p_1 p1 p 2 p_2 p2来对图像进行去畸变。
在这里插入图片描述
最后用校正后的特征点像素坐标覆盖特征点的老像素坐标。

step5

将特征点分配到图像网格中。目的应该就是为了方便后续两个图像帧之间的特征点配对。

总结

至此,就已经讲完了数据预处理的过程,主要的处理代码都是在Frame的构造函数当中,根据一帧图像,构建了一个Frame对象,里面存储着很多关键信息:每个金字塔图层的特征点及其对应旋转不变性的Rotated BRIEF,还对特征点进行去畸变。

这篇关于orbslam2代码解读(1):数据预处理过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1038386

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4