超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订)

本文主要是介绍超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解读InternVL-chat1.5系列

最近并行是事情太杂乱了,静下心来看一看优秀的开源项目,但是AI技术迭代这么快,现在基本是同时看五、六个方向的技术架构和代码,哪个我都不想放,都想知道原理和代码细节,还要自己训练起来,导致每天脑袋隐隐作痛了,感觉有点天龙八部里的“鸠摩智”的状态。
…目前的大模型核心能力热点是其通用能力的提升,从判别式、到对比学习、再到如今的多阶段对齐训练。VLM多模态模型在这两年已经逐渐普及(比如qwen-vl\deepseek-vl\yi-vl\glm4-v\minicpm-v)等优秀开源模型,今天我们来直接看下当前的开源SOTA模型,InternVl1.5是上海AI LAB一直迭代的多模态视觉语言大模型,之前的版本是1.2,今年迭代到1.5后达到了国内开源的SOTA评测分数,今天我们来解读一下InternVL1.5是如何做到的!

文章更新比较仓促,我会后续再修订!感谢阅读

`

文章目录

  • 解读InternVL-chat1.5系列
    • 文章更新比较仓促,我会后续再修订!感谢阅读
  • 阅读前置知识(Internvit的由来)
  • 一、模型信息概览
  • 二、Feature
    • 1. PT阶段
    • 2. 训练数据
    • 3. Scale up Model
    • 4. Dynamic Aspect Ratio Matching
  • 总结

如今的VLM多模态虽然训练方式阶段各有不同,但是架构范式同质化严重:
1. 视觉基础模型(多模态图文能力的视觉模型,不只有检测、分割、分类、还有图文检索、图像描述、多模态对话的能力)
2. LLM模型
3. 链接两个模型的mlp projector

阅读前置知识(Internvit的由来)

因为InternVL是从1.0开始迭代的,这里我们主要从1.5的版本和其前一版本1.2来进行解析!
Intervl1.0 经过三个阶段:对比学习PT、生成PT、SFT得到的一个视觉语言模型(数据多到少,质量低到高),最后通过深度和广度维度测试选定为6B模型。
在这里插入图片描述

作者团队介绍到:
Intervit就是从Intervl中抽出internVIT-6B.(应该是48层变成45层)作为VLM视觉基础模型;也可以直接
作分类和图文检索、和SD的文本编码器(开源项目Mulan)
PIXEL Shuffle :空间下采样操作,具体在MLP层输入之前;reshape后,默认下采样0.5,1024->256,这样减少了输入到LLM的token数量。代码参考:

vit_embeds = self.pixel_shuffle(vit_embeds,scale_factor=self.downsample_ratio)

一、模型信息概览

internVL-chat参考了LLaVA-NeXT-34B的做法,scale up 模型尺寸来验证VL性能的提升,这是1.2版本的思路,而1.5建立在1.2基础上进行了 迭代优化,先简要介绍下1.5,以及和1.2的区别。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
其中包含现在开源的和Plus版本:
MINI-intervl1.5-4 25.5B (internvit (6B)+internlm2-chat-20B(19.86B)+MLP)
MINI-intervl1.5-PLUS: (internvit (6B)+Nous-Hermes-2-Yi-34B+MLP) <未开源>

其中MIN包含:
MINI-intervl1.5-4.2B (internvit (300M)+phi3-mini-128K(3.8b)+MLP)
MINI-intervl1.5-2.2B (internvit (300M)+internLM2-chat_1.8B+MLP)
在这里插入图片描述

同样我们从上图对比中可以直观看到1.2到1.5之间一些明显的区别,同样也是改进提升的部分。
主要部分来说LLM的模型基座基本是一样的从小到大,再到34B的Nous-Hermes-2-Yi-34B(HF上开源fine-tune的版本)为PLUS版本的基座,基本上都是挑选的开源模型和其兄弟团队的intern2LM系列。所以LLM模型本身没什么特别需要说明的。
而至于MINI版本是其视觉编码器InternVIT通过蒸馏从6B压缩到300M得到的,再结合PHI3这些小模型。接下来让我们进入核心环节。

二、Feature


不同的改进之处

1. PT阶段

1.2版本的PT阶段VIT+MLP,而1.5的PT阶段对于大尺寸的LLM只训练MLP,小尺寸的LLM训练MLP+vit,

额外说下在PT后模型会被抽出来,减少三层也就是Internvit模型从原来48层减少到45层,再试用Pixel
suffle减少token数量到256.

2. 训练数据

额外使用了GPT-40模型进行标注生成,已经开源在huggingface上

1.5比1.2扩充了在SFT阶段扩充了高质量的双语数据(多语言、精细Prompt标注),特别强化了图像分辨率支持到4K和OCR能力。
因为多模态训练本身需要多任务数据集去训练,数据是保证模型评分指标的第一优先级。
在这里插入图片描述在这里插入图片描述

不同的只是LLM模型的不同。MINI版本的分别选择了internLM2-chat-1.8B和PHI3-mini-128K
在这里插入图片描述

3. Scale up Model

视觉模型与LLM参数量差距过大,一味提升大模型的参数量,VLM的能力并不会随之线性提升,因此从过去的版本的InternVL中通过实验证明了,视觉编码器的scale up也同样重要。所以视觉模型和语言模型同时scale up ,对于性能提升是有必要的,这也贯彻了sacle law。

4. Dynamic Aspect Ratio Matching

这是internvl1.5非常重要的一步骤,因为模型作者认为图像分辨率对于性能提升非常关键,因此聚焦于动态自定义分辨率,设计实现如上图:

  1. 预设纵横比集合:例如{1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 2:3, 3:2 …,2:6}多种可能的组合(这取决于自定义min和max两个变量,后面代码会说到)
  2. 最优匹配:对于每个输入图像,系统会计算其纵横比,并与预定义的集合进行比较,找出差异最小的纵横比。那么如果有多个匹配的纵横比(即并列最小差异)怎么办?比较原始图像面积与特定纵横比下的图像面积来实现的。如果特定纵横比下的图像面积大于原始图像面积的一半,那么这个纵横比会被选为最优纵横比。
  3. patch 分割:输入图像被动态分割成448x448的patch ,patch的数量是根据图像匹配的纵横比和分辨率 (在1到12之间变化)。
  4. 图像分割与缩略图(Image Division & Thumbnail)
    调整图像分辨率:一旦确定了合适的纵横比,图像将被调整到相应的分辨率。例如,一个800×1300的图像将被调整到896×1344。
    分割图像:调整后的图像被分割成448×448像素的瓦片。在训练阶段,根据图像的纵横比和分辨率,瓦片的数量可以在1到12,推理时候是1到40
    全局上下文缩略图:同时会resize 原始图像到448x448,帮助模型理解整体场景。

核心代码如下,比较简单不做注释了:

from transformers import AutoTokenizer, AutoModel
import torch
import torchvision.transforms as T
from PIL import Imagefrom torchvision.transforms.functional import InterpolationModeIMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)def build_transform(input_size):MEAN, STD = IMAGENET_MEAN, IMAGENET_STDtransform = T.Compose([T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),T.ToTensor(),T.Normalize(mean=MEAN, std=STD)])return transformdef find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):best_ratio_diff = float('inf')best_ratio = (1, 1)area = width * heightfor ratio in target_ratios:target_aspect_ratio = ratio[0] / ratio[1]ratio_diff = abs(aspect_ratio - target_aspect_ratio)if ratio_diff < best_ratio_diff:best_ratio_diff = ratio_diffbest_ratio = ratioelif ratio_diff == best_ratio_diff:if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:best_ratio = ratioreturn best_ratio#动态分辨率预处理
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):orig_width, orig_height = image.sizeaspect_ratio = orig_width / orig_height# calculate the existing image aspect ratiotarget_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) ifi * j <= max_num and i * j >= min_num)target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])# find the closest aspect ratio to the targettarget_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)# calculate the target width and heighttarget_width = image_size * target_aspect_ratio[0]target_height = image_size * target_aspect_ratio[1]blocks = target_aspect_ratio[0] * target_aspect_ratio[1]# resize the imageresized_img = image.resize((target_width, target_height))processed_images = []for i in range(blocks):box = ((i % (target_width // image_size)) * image_size,(i // (target_width // image_size)) * image_size,((i % (target_width // image_size)) + 1) * image_size,((i // (target_width // image_size)) + 1) * image_size)# split the imagesplit_img = resized_img.crop(box)processed_images.append(split_img)assert len(processed_images) == blocksif use_thumbnail and len(processed_images) != 1:thumbnail_img = image.resize((image_size, image_size))processed_images.append(thumbnail_img)return processed_imagesdef load_image(image_file, input_size=448, max_num=6):image = Image.open(image_file).convert('RGB')transform = build_transform(input_size=input_size)images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)pixel_values = [transform(image) for image in images]pixel_values = torch.stack(pixel_values)return pixel_values

额外的实验结果是,训练在1-12 块Patch的范围内,但是推理时候泛化到了40个,(开始说过VIT模型输出是256个token,所以256x(40+1)=10496),实验证明24块为最优效果。

后续有代码相关问题和实践问题我会修订补充在这里

总结

internvl,通过自己提炼的Internvit和探索大模型参数,最终以6B为基准作为基线视觉编码器,再通过提高分辨率改为动态;在视觉模型上下了很大的功夫;其次同样scale up大模型参数量,这也符合scale law的经验,但是最关键的还有其1.5版本尚未开源的高质量数据集(1.2的数据集也可以用,但是明显1.5有一多半的功劳还是数据),期待后续开源数据集。其MINI系列提供了2B和4B版本的模型对于散修来说非常友好,最近几天我也在折腾,打算先用Lora试(用MINI2B版本,进行Lora target qkv \bf16 大概19G+显存的训练开销),值得一提的是其尚未开源的PLUS版本应该Beach mark得分会更高,但是因为模型参数40B比较大 ,可能普通散修没有资源来微调。

这篇关于超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037851

相关文章

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na