超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订)

本文主要是介绍超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解读InternVL-chat1.5系列

最近并行是事情太杂乱了,静下心来看一看优秀的开源项目,但是AI技术迭代这么快,现在基本是同时看五、六个方向的技术架构和代码,哪个我都不想放,都想知道原理和代码细节,还要自己训练起来,导致每天脑袋隐隐作痛了,感觉有点天龙八部里的“鸠摩智”的状态。
…目前的大模型核心能力热点是其通用能力的提升,从判别式、到对比学习、再到如今的多阶段对齐训练。VLM多模态模型在这两年已经逐渐普及(比如qwen-vl\deepseek-vl\yi-vl\glm4-v\minicpm-v)等优秀开源模型,今天我们来直接看下当前的开源SOTA模型,InternVl1.5是上海AI LAB一直迭代的多模态视觉语言大模型,之前的版本是1.2,今年迭代到1.5后达到了国内开源的SOTA评测分数,今天我们来解读一下InternVL1.5是如何做到的!

文章更新比较仓促,我会后续再修订!感谢阅读

`

文章目录

  • 解读InternVL-chat1.5系列
    • 文章更新比较仓促,我会后续再修订!感谢阅读
  • 阅读前置知识(Internvit的由来)
  • 一、模型信息概览
  • 二、Feature
    • 1. PT阶段
    • 2. 训练数据
    • 3. Scale up Model
    • 4. Dynamic Aspect Ratio Matching
  • 总结

如今的VLM多模态虽然训练方式阶段各有不同,但是架构范式同质化严重:
1. 视觉基础模型(多模态图文能力的视觉模型,不只有检测、分割、分类、还有图文检索、图像描述、多模态对话的能力)
2. LLM模型
3. 链接两个模型的mlp projector

阅读前置知识(Internvit的由来)

因为InternVL是从1.0开始迭代的,这里我们主要从1.5的版本和其前一版本1.2来进行解析!
Intervl1.0 经过三个阶段:对比学习PT、生成PT、SFT得到的一个视觉语言模型(数据多到少,质量低到高),最后通过深度和广度维度测试选定为6B模型。
在这里插入图片描述

作者团队介绍到:
Intervit就是从Intervl中抽出internVIT-6B.(应该是48层变成45层)作为VLM视觉基础模型;也可以直接
作分类和图文检索、和SD的文本编码器(开源项目Mulan)
PIXEL Shuffle :空间下采样操作,具体在MLP层输入之前;reshape后,默认下采样0.5,1024->256,这样减少了输入到LLM的token数量。代码参考:

vit_embeds = self.pixel_shuffle(vit_embeds,scale_factor=self.downsample_ratio)

一、模型信息概览

internVL-chat参考了LLaVA-NeXT-34B的做法,scale up 模型尺寸来验证VL性能的提升,这是1.2版本的思路,而1.5建立在1.2基础上进行了 迭代优化,先简要介绍下1.5,以及和1.2的区别。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
其中包含现在开源的和Plus版本:
MINI-intervl1.5-4 25.5B (internvit (6B)+internlm2-chat-20B(19.86B)+MLP)
MINI-intervl1.5-PLUS: (internvit (6B)+Nous-Hermes-2-Yi-34B+MLP) <未开源>

其中MIN包含:
MINI-intervl1.5-4.2B (internvit (300M)+phi3-mini-128K(3.8b)+MLP)
MINI-intervl1.5-2.2B (internvit (300M)+internLM2-chat_1.8B+MLP)
在这里插入图片描述

同样我们从上图对比中可以直观看到1.2到1.5之间一些明显的区别,同样也是改进提升的部分。
主要部分来说LLM的模型基座基本是一样的从小到大,再到34B的Nous-Hermes-2-Yi-34B(HF上开源fine-tune的版本)为PLUS版本的基座,基本上都是挑选的开源模型和其兄弟团队的intern2LM系列。所以LLM模型本身没什么特别需要说明的。
而至于MINI版本是其视觉编码器InternVIT通过蒸馏从6B压缩到300M得到的,再结合PHI3这些小模型。接下来让我们进入核心环节。

二、Feature


不同的改进之处

1. PT阶段

1.2版本的PT阶段VIT+MLP,而1.5的PT阶段对于大尺寸的LLM只训练MLP,小尺寸的LLM训练MLP+vit,

额外说下在PT后模型会被抽出来,减少三层也就是Internvit模型从原来48层减少到45层,再试用Pixel
suffle减少token数量到256.

2. 训练数据

额外使用了GPT-40模型进行标注生成,已经开源在huggingface上

1.5比1.2扩充了在SFT阶段扩充了高质量的双语数据(多语言、精细Prompt标注),特别强化了图像分辨率支持到4K和OCR能力。
因为多模态训练本身需要多任务数据集去训练,数据是保证模型评分指标的第一优先级。
在这里插入图片描述在这里插入图片描述

不同的只是LLM模型的不同。MINI版本的分别选择了internLM2-chat-1.8B和PHI3-mini-128K
在这里插入图片描述

3. Scale up Model

视觉模型与LLM参数量差距过大,一味提升大模型的参数量,VLM的能力并不会随之线性提升,因此从过去的版本的InternVL中通过实验证明了,视觉编码器的scale up也同样重要。所以视觉模型和语言模型同时scale up ,对于性能提升是有必要的,这也贯彻了sacle law。

4. Dynamic Aspect Ratio Matching

这是internvl1.5非常重要的一步骤,因为模型作者认为图像分辨率对于性能提升非常关键,因此聚焦于动态自定义分辨率,设计实现如上图:

  1. 预设纵横比集合:例如{1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 2:3, 3:2 …,2:6}多种可能的组合(这取决于自定义min和max两个变量,后面代码会说到)
  2. 最优匹配:对于每个输入图像,系统会计算其纵横比,并与预定义的集合进行比较,找出差异最小的纵横比。那么如果有多个匹配的纵横比(即并列最小差异)怎么办?比较原始图像面积与特定纵横比下的图像面积来实现的。如果特定纵横比下的图像面积大于原始图像面积的一半,那么这个纵横比会被选为最优纵横比。
  3. patch 分割:输入图像被动态分割成448x448的patch ,patch的数量是根据图像匹配的纵横比和分辨率 (在1到12之间变化)。
  4. 图像分割与缩略图(Image Division & Thumbnail)
    调整图像分辨率:一旦确定了合适的纵横比,图像将被调整到相应的分辨率。例如,一个800×1300的图像将被调整到896×1344。
    分割图像:调整后的图像被分割成448×448像素的瓦片。在训练阶段,根据图像的纵横比和分辨率,瓦片的数量可以在1到12,推理时候是1到40
    全局上下文缩略图:同时会resize 原始图像到448x448,帮助模型理解整体场景。

核心代码如下,比较简单不做注释了:

from transformers import AutoTokenizer, AutoModel
import torch
import torchvision.transforms as T
from PIL import Imagefrom torchvision.transforms.functional import InterpolationModeIMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)def build_transform(input_size):MEAN, STD = IMAGENET_MEAN, IMAGENET_STDtransform = T.Compose([T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),T.ToTensor(),T.Normalize(mean=MEAN, std=STD)])return transformdef find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):best_ratio_diff = float('inf')best_ratio = (1, 1)area = width * heightfor ratio in target_ratios:target_aspect_ratio = ratio[0] / ratio[1]ratio_diff = abs(aspect_ratio - target_aspect_ratio)if ratio_diff < best_ratio_diff:best_ratio_diff = ratio_diffbest_ratio = ratioelif ratio_diff == best_ratio_diff:if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:best_ratio = ratioreturn best_ratio#动态分辨率预处理
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):orig_width, orig_height = image.sizeaspect_ratio = orig_width / orig_height# calculate the existing image aspect ratiotarget_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) ifi * j <= max_num and i * j >= min_num)target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])# find the closest aspect ratio to the targettarget_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)# calculate the target width and heighttarget_width = image_size * target_aspect_ratio[0]target_height = image_size * target_aspect_ratio[1]blocks = target_aspect_ratio[0] * target_aspect_ratio[1]# resize the imageresized_img = image.resize((target_width, target_height))processed_images = []for i in range(blocks):box = ((i % (target_width // image_size)) * image_size,(i // (target_width // image_size)) * image_size,((i % (target_width // image_size)) + 1) * image_size,((i // (target_width // image_size)) + 1) * image_size)# split the imagesplit_img = resized_img.crop(box)processed_images.append(split_img)assert len(processed_images) == blocksif use_thumbnail and len(processed_images) != 1:thumbnail_img = image.resize((image_size, image_size))processed_images.append(thumbnail_img)return processed_imagesdef load_image(image_file, input_size=448, max_num=6):image = Image.open(image_file).convert('RGB')transform = build_transform(input_size=input_size)images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)pixel_values = [transform(image) for image in images]pixel_values = torch.stack(pixel_values)return pixel_values

额外的实验结果是,训练在1-12 块Patch的范围内,但是推理时候泛化到了40个,(开始说过VIT模型输出是256个token,所以256x(40+1)=10496),实验证明24块为最优效果。

后续有代码相关问题和实践问题我会修订补充在这里

总结

internvl,通过自己提炼的Internvit和探索大模型参数,最终以6B为基准作为基线视觉编码器,再通过提高分辨率改为动态;在视觉模型上下了很大的功夫;其次同样scale up大模型参数量,这也符合scale law的经验,但是最关键的还有其1.5版本尚未开源的高质量数据集(1.2的数据集也可以用,但是明显1.5有一多半的功劳还是数据),期待后续开源数据集。其MINI系列提供了2B和4B版本的模型对于散修来说非常友好,最近几天我也在折腾,打算先用Lora试(用MINI2B版本,进行Lora target qkv \bf16 大概19G+显存的训练开销),值得一提的是其尚未开源的PLUS版本应该Beach mark得分会更高,但是因为模型参数40B比较大 ,可能普通散修没有资源来微调。

这篇关于超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037851

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP